Sequential decisions under uncertainty Policy iteration

Tomáš Svoboda \& Matej Hoffmann
Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

April 6, 2020

Unreliable actions in observable grid world

- Walls block movement - agent/robot stays in place.
- Actions do not always go as planned.
- Agent receives rewards each time step:
- Small "living" reward/penalty.
- Big rewards/penalties at the end.

- Goal: maximize sum of (discounted) rewards

MDPs recap

Markov decision processes (MDPs):

- Set of states \mathcal{S}
- Set of actions \mathcal{A}
- Transitions $p\left(s^{\prime} \mid s, a\right)$ or $T\left(s, a, s^{\prime}\right)$
- Rewards $r\left(s, a, s^{\prime}\right)$; and discount γ

Q-values - like values but given that I have commited to do action a from state s.

MDPs recap

Markov decision processes (MDPs):

- Set of states \mathcal{S}
- Set of actions \mathcal{A}
- Transitions $p\left(s^{\prime} \mid s, a\right)$ or $T\left(s, a, s^{\prime}\right)$
- Rewards $r\left(s, a, s^{\prime}\right)$; and discount γ

MDP quantities:

- Policy $\pi(s): \mathcal{S} \rightarrow \mathcal{A}$
- Utility - sum of (discounted) rewards.

- Values - expected future utility from a state (max-node), $v(s)$
- Q-Values - expected future utility from
a q-state (chance-node), $q(s, a)$
Q-values - like values but given that I have commited to do action a from state s.

Optimal quantities

- The optimal policy: $\pi^{*}(s)$ - optimal action from state s
- Expected utility/return of a policy.

$$
U^{\pi}\left(S_{t}\right)=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}\right]
$$

Best policy π^{*} maximizes above.

Notes
Remember: Discounted return G_{t}
Returns are successive steps related to each other

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \\
& =R_{t+1}+\gamma\left(R_{t+2}+\gamma^{1} R_{t+3}+\gamma^{2} R_{t+4}+\cdots\right) \\
& =R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$

$G_{t} \doteq \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k}$ including the possibility that $T=\infty$ or $\gamma=1$, but not both.

Optimal quantities

- The optimal policy: $\pi^{*}(s)$ - optimal action from state s
- Expected utility/return of a policy.

$$
U^{\pi}\left(S_{t}\right)=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}\right]
$$

Best policy π^{*} maximizes above.

- The value of a state $s: v^{*}(s)$ - expected

s, a, s^{\prime} is a transition
 utility starting in s and acting optimally.

Remember: Discounted return G_{t}
Returns are successive steps related to each other

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \\
& =R_{t+1}+\gamma\left(R_{t+2}+\gamma^{1} R_{t+3}+\gamma^{2} R_{t+4}+\cdots\right) \\
& =R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$

$G_{t} \doteq \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k}$ including the possibility that $T=\infty$ or $\gamma=1$, but not both.

Optimal quantities

- The optimal policy: $\pi^{*}(s)$ - optimal action from state s
- Expected utility/return of a policy.

$$
U^{\pi}\left(S_{t}\right)=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}\right]
$$

Best policy π^{*} maximizes above.

- The value of a state $s: v^{*}(s)$ - expected

$$
s, a, s^{\prime} \text { is a transition }
$$

 utility starting in s and acting optimally.

- The value of a q-state $(s, a): q^{*}(s, a)$ expected utility having taken a from state s and acting optimally thereafter.

Notes

Remember: Discounted return G_{t}
Returns are successive steps related to each other

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \\
& =R_{t+1}+\gamma\left(R_{t+2}+\gamma^{1} R_{t+3}+\gamma^{2} R_{t+4}+\cdots\right) \\
& =R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$

$G_{t} \doteq \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k}$ including the possibility that $T=\infty$ or $\gamma=1$, but not both.

The value of a q-state (s, a) :
$\left.q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right]$

The value of a q-state (s, a) :
$\left.q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right]$

The value of a state s :

$$
v^{*}(s)=\max _{a} q^{*}(s, a)
$$

The value of a q-state (s, a) :
$\left.q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right]$

The value of a state s :

$$
v^{*}(s)=\max _{a} q^{*}(s, a)
$$

Maze: v^{*} vs. q^{*}
0.81

$$
\begin{aligned}
q^{*}(s, a) & \left.=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right] \\
v^{*}(s) & =\max _{a} q^{*}(s, a)
\end{aligned}
$$

Notes

This is the $R=-0.04$ for nonterminal states maze (AIMA Fig. 17.3).

$$
, \gamma=1
$$

Note that the Value of a state takes into account a number of things:

- the policy - which action will chosen in s
- the fact that the goal may be far away and
- there will be a number of living penalties incured before reaching it
- the final reward will be discounted
- the transition probabilities
Q-values - useful for choosing the best action - getting the policy.

Maze: v^{*} vs. q^{*}
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
0

0
1
2
3
4
0

0
1
2
3
4

0

Notes
$A=\{\leftarrow, \rightarrow\}$
$P($ action - succeeds - as - planned $)=0.8, P($ reverse - direction - of - movement than - commanded $)=0.2$

Value iteration

- Bellman equations characterize the optimal values

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

Bellman equations:

1. Take correct first action (1 ply of Expectimax)
2. Keep being optimal (recursion $v^{*}\left(s^{\prime}\right)$)

Recall that we may simplify equations by marginalizing rewards if all $r\left(s, a, s^{\prime}\right)$ are the same.

$$
r(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right) r\left(s, a, s^{\prime}\right)
$$

Value iteration

- Bellman equations characterize the optimal values

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

- Value iteration computes them:

$$
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Bellman equations:

1. Take correct first action (1 ply of Expectimax)
2. Keep being optimal (recursion $v^{*}\left(s^{\prime}\right)$)

Recall that we may simplify equations by marginalizing rewards if all $r\left(s, a, s^{\prime}\right)$ are the same.

$$
r(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right) r\left(s, a, s^{\prime}\right)
$$

Value iteration

- Bellman equations characterize the optimal values

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

- Value iteration computes them:

$$
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Value iteration is a fixed point solution method.

Bellman equations:

1. Take correct first action (1 ply of Expectimax)
2. Keep being optimal (recursion $v^{*}\left(s^{\prime}\right)$)

Recall that we may simplify equations by marginalizing rewards if all $r\left(s, a, s^{\prime}\right)$ are the same.

$$
r(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right) r\left(s, a, s^{\prime}\right)
$$

Convergence

$$
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Thinking about special cases: deterministic world, $\gamma=0, \gamma=1$.
- For all $s, V_{k}(s)$ and $V_{k+1}(s)$ can be seen as expectimax search trees of depth k and $k+1$

We will show it on the blackboard during the lecture

From Values to Policy

Policy extraction - computing actions from Values

	0	1	2	3	
0	0.81	0.87	0.92	1.00	0
1	0.76		0.66	-1.00	1
2	0.71	0.66	0.61	0.39	2
	0	1	2	3	

Policy extraction - computing actions from Values

- Assume we have $v^{*}(s)$
- What is the optimal action?
- We need a one-step expectimax:

$$
\pi^{*}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

Policy extraction - computing actions from q-Values

- Assume we have $q^{*}(s, a)$
- What is the optimal action?

0

1

0
1
2
3

Policy extraction - computing actions from q-Values

- Assume we have $q^{*}(s, a)$
- What is the optimal action?
- Just take the (arg) max:
$\pi^{*}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } q^{*}(s, a)$
0
1
2
3

Actions are easier to extract from q-values.

What is wrong with the Value iteration?

$$
V_{k+1}(s) \leftarrow \max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Notes
Complexity: $O\left(S^{2} * A\right)$ per iteration
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Run "AIMA Fig. $17.2 / 17.3$ demo" with $R=-0.04$
mdp_agents.py, value iteration with eps $=0.03$, discount $=0.999999$

- verbosity=SHOW.UTILS
- verbosity=SHOW.QVALS - max does not change often...

What is wrong with the Value iteration?

$$
V_{k+1}(s) \leftarrow \max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- What is complexity of one iteration - over all S states?

Complexity: $O\left(S^{2} * A\right)$ per iteration
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Run "AIMA Fig. $17.2 / 17.3$ demo" with $R=-0.04$
mdp_agents.py, value iteration with eps $=0.03$, discount $=0.999999$

- verbosity=SHOW.UTILS
- verbosity=SHOW.QVALS - max does not change often...

What is wrong with the Value iteration?

$$
V_{k+1}(s) \leftarrow \max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- What is complexity of one iteration - over all S states?
- Does the "max" change often?

Complexity: $O\left(S^{2} * A\right)$ per iteration
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Run "AIMA Fig. $17.2 / 17.3$ demo" with $R=-0.04$
mdp_agents.py, value iteration with eps $=0.03$, discount $=0.999999$

- verbosity=SHOW.UTILS
- verbosity=SHOW.QVALS - max does not change often...

What is wrong with the Value iteration?

$$
V_{k+1}(s) \leftarrow \max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- What is complexity of one iteration - over all S states?
- Does the "max" change often?
- When the does the policy converge?

Complexity: $O\left(S^{2} * A\right)$ per iteration
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Run "AIMA Fig. $17.2 / 17.3$ demo" with $R=-0.04$
mdp_agents.py, value iteration with eps $=0.03$, discount $=0.999999$

- verbosity=SHOW.UTILS
- verbosity=SHOW.QVALS - max does not change often...

What is wrong with the Value iteration?

$$
V_{k+1}(s) \leftarrow \max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- What is complexity of one iteration - over all S states?
- Does the "max" change often?
- When the does the policy converge?
- Can we compute the policy directly?

Notes
Complexity: $O\left(S^{2} * A\right)$ per iteration
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Run "AIMA Fig. $17.2 / 17.3$ demo" with $R=-0.04$
mdp_agents.py, value iteration with eps $=0.03$, discount $=0.999999$

- verbosity=SHOW.UTILS
- verbosity=SHOW.QVALS - max does not change often...

Policy evaluation

- Assume $\pi(s)$ given.
- How to evaluate (compare)?

Notes
Remember last week's quizz?

Fixed policy, do what π says

- Expectimax trees "max" over all actions

Fixed policy, do what π says

State values under a fixed policy

- Expectimax trees "max" over all actions

Recall that $v^{\pi}(s)$ quantity contains all the future - expected discounted sum of rewards - executing policy from the state s onwards.

State values under a fixed policy

- Expectimax trees "max" over all actions

- Fixed π for each state \rightarrow no "max" operator!

Recall that $v^{\pi}(s)$ quantity contains all the future - expected discounted sum of rewards - executing policy from the state s onwards.

State values under a fixed policy

- Expectimax trees "max" over all actions
- Fixed π for each state \rightarrow no "max" operator!

$$
v^{\pi}(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma v^{\pi}\left(s^{\prime}\right)\right]
$$

Recall that $v^{\pi}(s)$ quantity contains all the future - expected discounted sum of rewards - executing policy from the state s onwards.

How to compute $v^{\pi}(s)$?

$$
\begin{array}{cccc}
v^{\pi}(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma v^{\pi}\left(s^{\prime}\right)\right] \\
0 & 1 & 2 & 3
\end{array}
$$

- by iteration
- solving set of equations

Policy iteration

- Start with a random policy.

Policy iteration

- Start with a random policy.
- Step 1: Evaluate it.

Policy iteration

- Start with a random policy.
- Step 1: Evaluate it.
- Step 2: Improve it.

Policy iteration

- Start with a random policy.
- Step 1: Evaluate it.
- Step 2: Improve it.
- Repeat steps until policy converges.
- Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

A few demo runs of mdp_agents.py.
Note that the value is taken from "old policy" on RHS.

Policy iteration algorithm

function POLICY-ITERATION(env) returns: policy π input: env - MDP problem
$\pi(s) \leftarrow$ random $a \in A(s)$ in all states
$V(s) \leftarrow 0$ in all states

Policy iteration algorithm

function POLICY-ITERATION(env) returns: policy π input: env - MDP problem
$\pi(s) \leftarrow$ random $a \in A(s)$ in all states
$V(s) \leftarrow 0$ in all states
repeat
\triangleright iterate values until no change in policy

Policy iteration algorithm

function POLICY-ITERATION(env) returns: policy π input: env - MDP problem
$\pi(s) \leftarrow$ random $a \in A(s)$ in all states
$V(s) \leftarrow 0$ in all states

```
repeat
 iterate values until no change in policy
V}\leftarrow\mathrm{ POLICY-EVALUATION ( }\pi,V\mathrm{ , env)
    unchanged }\leftarrow\mathrm{ True
```


Policy iteration algorithm

function POLICY-ITERATION(env) returns: policy π input: env - MDP problem
$\pi(s) \leftarrow$ random $a \in A(s)$ in all states
$V(s) \leftarrow 0$ in all states

```
repeat
\(\triangleright\) iterate values until no change in policy
\(V \leftarrow\) POLICY-EVALUATION \((\pi, V\), env \()\)
unchanged \(\leftarrow\) True
for each state \(s\) in \(S\) do
    if \(\max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V\left(s^{\prime}\right)>\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right)\) then
        \(\pi(s) \leftarrow \arg \max \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V\left(s^{\prime}\right)\)
                \(a \in A(s)\)
        unchanged \(\leftarrow\) False
    end if
end for
```


Policy iteration algorithm

```
function POLICY-ITERATION(env) returns: policy \(\pi\)
    input: env - MDP problem
    \(\pi(s) \leftarrow\) random \(a \in A(s)\) in all states
    \(V(s) \leftarrow 0\) in all states
    repeat \(\quad \triangleright\) iterate values until no change in policy
    \(V \leftarrow \operatorname{POLICY}-\operatorname{EVALUATION}(\pi, V\), env \()\)
    unchanged \(\leftarrow\) True
    for each state \(s\) in \(S\) do
        if \(\max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V\left(s^{\prime}\right)>\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right)\) then
        \(\pi(s) \leftarrow \arg \max \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V\left(s^{\prime}\right)\)
                \(a \in A(s)\)
        unchanged \(\leftarrow\) False
        end if
    end for
    until unchanged
end function
```

Policy vs. Value iteration

- Value iteration.
- Iteration updates values and policy. Although policy implicitly extracted from values
- No track of policy.

Notes

Complexity (of one iteration step):
Value iteration: $O\left(S^{2} * A\right)$
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Policy evaluation: $O\left(S^{3}\right)$ (after AIMA, pg. 657)
The Bellman equations are linear because the max operator is gone.
For $\sharp S$ states, we have $\sharp S$ equations, which can be solved exactly in time $O\left(S^{3}\right)$ using standard linear algebra methods.
For small state spaces - ok.
For large state spaces - may be prohibitive \rightarrow modified policy iteration with only a certain number of simplified Bellman update.

- Value iteration.
- Iteration updates values and policy. Although policy implicitly extracted from values
- No track of policy.
- Policy iteration.
- Update utilities is fast - only one action per state.
- New policy from values (slower)
- New policy is better or done.

Notes

Complexity (of one iteration step):
Value iteration: $O\left(S^{2} * A\right)$
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Policy evaluation: $O\left(S^{3}\right)$ (after AIMA, pg. 657)
The Bellman equations are linear because the max operator is gone.
For $\sharp S$ states, we have $\sharp S$ equations, which can be solved exactly in time $O\left(S^{3}\right)$ using standard linear algebra methods.
For small state spaces - ok.
For large state spaces - may be prohibitive \rightarrow modified policy iteration with only a certain number of simplified Bellman update.

- Value iteration.
- Iteration updates values and policy. Although policy implicitly extracted from values
- No track of policy.
- Policy iteration.
- Update utilities is fast - only one action per state.
- New policy from values (slower)
- New policy is better or done.
- Both methods belong to Dynamic programming realm.

Notes

Complexity (of one iteration step):
Value iteration: $O\left(S^{2} * A\right)$
For every state (LHS), there can be up to $\sharp S$ also on RHS - if every other state was reachable from the current state.
In addition, all actions from every state need to be considered.
$\operatorname{Max}(A)$ does not change often.
Policy often converges long before the values.
Policy evaluation: $O\left(S^{3}\right)$ (after AIMA, pg. 657)
The Bellman equations are linear because the max operator is gone.
For $\sharp S$ states, we have $\sharp S$ equations, which can be solved exactly in time $O\left(S^{3}\right)$ using standard linear algebra methods.
For small state spaces - ok.
For large state spaces - may be prohibitive \rightarrow modified policy iteration with only a certain number of simplified Bellman update.

References

Further reading: Chapter 17 of [1] however, policy iteration is quite compact there. More detailed discussion can be found in chapter Dynamic programming in [2] with slightly different notation, though. This lecture has been also greatly inspired by the 9th lecture of CS 188 at http://ai.berkeley.edu as it convincingly motivates policy search and offers an alternative convergence proof of the value iteration method.
[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

Bandits

