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Games, man vs. algorithm

I Deep Blue

I Alpha Go

I Deep Stack

I Why Games, actually?

Games are interesting for AI because they are hard (to solve).
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Notes

Please note, the hyperlinks at the main slides are not active in the slides with notes. Hyperlinks within the notes

should be active, though.

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf
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More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras
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Notes

• Fooling Tesla autopilot by adversarial attack:

http://cmp.felk.cvut.cz/cmp/courses/B3B33KUI/videos/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras
https://www.techradar.com/news/researchers-tricked-a-tesla-model-s-into-speeding-with-a-piece-of-tape-how-could-hackers-cheat-our-cars-in-the-future


Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize? Examples for some
games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png
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Notes
Defining a game as a kind of search problem:

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A
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Terminal utilitity: Zero–Sum and General games

I Zero-sum: players have opposite utilities (values)

I Zero-sum: playing against opponent

I General game: independent utilities

I General game: cooperations, competition, . . .
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Notes
Most common games—such as chess—have these properties:

• two-player

• turn-taking

• deterministic with perfect information (a.k.a. deterministic, fully observable environments)

In some games, there is imperfect information (evironment is not fully observable). E.g., poker – no access to

what cards opponents hold.
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Game Tree(s)
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Notes

Init state, actions function, and result function defines game tree.

Note: game tree as opposed to search tree. Game tree are all possible evolutions of the game.

(With standard search, we similarly had state space graph vs. search tree.)



State Value V (s)

V (s) – value V of a state s : The best utility achievable from this state.

V (s) = max
s′∈children(s)

V (s ′)

7 / 24

Notes
Think about the State Value. It is a theoretical construct, definition. Depending on the problem, there may be
various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step. How would you compute the V (s) for

a given state s?
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Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)
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Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.
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Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

. . . . . . . . . . . .

. . .

. . .

. . .

XX

–1  0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

. . . . . . . . . . . .

. . .

. . .

. . .

XX

–1  0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min
9 / 24

Notes
Max step: I want to maximize my outcome.

Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.
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Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
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end for
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if terminal-test(state) then return utility(state)
end if
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A two ply game, down to terminal and back again . . .
function minimax(s) returns a

argmax
a∈Actions(s)

minval(res(s, a))

end function
function minval(s) returns v

if terminal(s) then util(s)
end if
v ←∞
for all actions(s) do

v ← min(v , maxval(res(s, a)))
end for

end function
function maxval(s) returns v

if terminal(s) then util(s)
end if
v ← −∞
for all actions(s) do

v ← max(v , minval(res(s, a)))
end for

end function

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN
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Notes

Before going to the animation on the next slide, try to follow the algorithm by a pencil and paper.



A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?
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Nodes (sub-trees) worth visiting
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< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >
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Notes
Constraining the possible node values as search progresses...
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α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
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α-β prunnig – How much can we save?

original: Time: O(bm)

I how to select nodes?

I perfect ordering?

15 / 24

Notes

It is clear that ordering of child nodes matters. Draw tree of α-β search in case of perferct ordering. Effective

branching factor becomes
√
b instead of b which effectively doubles the depth can be searched: Time: O(bm/2)



function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

16 / 24

Notes

Take the tree from the previous slide and try to go step-by-step, watch α, β and v
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Recall: Iterative deepening DFS (ID-DFS)

I Start with maxdepth = 1

I Perform DFS with limited depth. Report success or failure.

I If failure, forget everything, increase maxdepth and repeat DFS

The “wasting” of resources is not too bad. Recall:

I Most nodes are at the deepest levels.

I Asymptotic complexity unchanged.
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bm nodes<latexit sha1_base64="psCuRV1mt1LvxYwyneuj19UIUhU=">AAACLHicZVDLSgNBEJz1GeMzevQyGAVPYVcPehS9eIxgNJCN0jvbq4PzWGZmlbDkM7zqH/g1XkS8+h1OHqLRhoaiqhuqKskFty4M34Kp6ZnZufnKQnVxaXllda22fmF1YRi2mBbatBOwKLjCluNOYDs3CDIReJncnQz0y3s0lmt17no5diXcKJ5xBs5Tne3kSm5TpVO012v1sBEOh/4H0RjUyXia17VgMU41KyQqxwRY24nC3HVLMI4zgf1qXFjMgd3BDXY8VCDRdsuh5z7d8UxKM238KkeH7O+PEqS1PZn4Swnu1v7VBuSPZlDhA9NSgkrLOAPJRS/FDArh+mVss2886cllh92Sq7xwqNjIUlYI6jQdVEVTbpA50fMAmOE+FWW3YIA5X2g1zsFwlfrw1Meu+vqiv2X9Bxd7jWi/EZ7t1Y+Ox0VWyCbZIrskIgfkiJySJmkRRjR5JE/kOXgJXoP34GN0OhWMfzbIxASfX9Hqp4U=</latexit>

…………………

…

s
<latexit sha1_base64="r8gbB3BUNfto6YMSFfYvarzt09Y=">AAACJHicZVDLSgNBEJz1GeMzevQymAiewq4e9Ch68RjRJIIbQu9sbzJkZnaZmVXCkk/wqn/g13gTD178FicP8dXQUFR1Q1VFmeDG+v67Nze/sLi0XFopr66tb2xuVbZbJs01wyZLRapvIjAouMKm5VbgTaYRZCSwHQ3Ox3r7DrXhqbq2www7EnqKJ5yBddRVzdS6W1W/7k+G/gfBDFTJbBrdircaxinLJSrLBBhzG/iZ7RSgLWcCR+UwN5gBG0APbx1UINF0ionXEd13TEyTVLtVlk7Ynx8FSGOGMnKXEmzf/NXG5LemUeE9S6UEFRdhApKLYYwJ5MKOitAkX/i3J5ucdAqustyiYlNLSS6oTem4IhpzjcyKoQPANHepKOuDBmZdkeUwA81V7MJTF7vs6gv+lvUftA7rwVHdvzysnp7NiiyRXbJHDkhAjskpuSAN0iSM9MgDeSRP3rP34r16b9PTOW/2s0N+jffxCXU6pEI=</latexit> bs nodes<latexit sha1_base64="kR75eygmGA/ulNW+P3CFg39Zu38=">AAACLHicZVDLSgNBEJz1GeMzevQyGAVPYVcPehS9eIxgNJCN0jvbq4PzWGZmlbDkM7zqH/g1XkS8+h1OHqLRhoaiqhuqKskFty4M34Kp6ZnZufnKQnVxaXllda22fmF1YRi2mBbatBOwKLjCluNOYDs3CDIReJncnQz0y3s0lmt17no5diXcKJ5xBs5Tne3kym5TpVO012v1sBEOh/4H0RjUyXia17VgMU41KyQqxwRY24nC3HVLMI4zgf1qXFjMgd3BDXY8VCDRdsuh5z7d8UxKM238KkeH7O+PEqS1PZn4Swnu1v7VBuSPZlDhA9NSgkrLOAPJRS/FDArh+mVss2886cllh92Sq7xwqNjIUlYI6jQdVEVTbpA50fMAmOE+FWW3YIA5X2g1zsFwlfrw1Meu+vqiv2X9Bxd7jWi/EZ7t1Y+Ox0VWyCbZIrskIgfkiJySJmkRRjR5JE/kOXgJXoP34GN0OhWMfzbIxASfX9yIp4s=</latexit>

Bonus for α-β pruning: previous “shallower” iterations can be reused for node ordering.
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Notes
α-β pruning is good. Still, in chess, for example, there is no way we can compute till the end.

Time is limited. We need to respond within a certain amount of time.
Possible solution: iterative deepening search. If I can’t complete the computation for the current depth, I can
use the previous shallower one that finished.



Imperfect but real-time decisions: iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

18 / 24

Notes

Even with perfect ordering, α-β pruning does not save us.

One problem left: can’t compute till then end, need to cut off, need for Evaluation function.
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Cutting off search and evaluation functions

Replace
if terminal-test(s) then return terminal-utility(s)
with:
if cutoff-test(s,d) then return eval(s)

Historical note: cutting search off earlier and use of heuristic evaluation functions proposed by
Claude Shannon in Programming a Computer for Playing Chess (1950).

19 / 24

Notes

Cutting depends on d only, why we need s as the input parameter?



eval(s) – Evaluation functions

(estimate of) State value for non-terminal states
We need an easy-to-compute function correlated with “chance of winning”. For chess:

I Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

I Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

I Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

20 / 24

Notes
For many problems it is not so easy to find/construct proper function. We may try more functions and combine

them conveniently.
f1(s) = number of white pawns− number of black pawns

How to tune weights wi?
or Deep Nets! Yeah!

How to get training data for supervised learning? More later.
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eval(s) – Problems
What if something important happens just beyond the current horizon of the search?

(b) White to move(a) White to move

Additional improvements:

I “Killer moves”—capturing opponent’s pieces, check etc.—should be considered first.
I Quiescence search – EVAL function should be applied only once things calm down.

During capturing of pieces, depth should be locally increased.
21 / 24

Notes



Computer play vs. grandmaster play

I Computers are better since 1997 (Deep Blue defeating Garry Kasparov).

I The way they play is still very different: “dumb”, relying on “brute force”.
I Grandmasters do not excel in being able to compute very deep—many moves ahead.

I They play based on experience: super-effective pruning and evaluation functions.
I They consider only 2 to 3 moves in most positions (branching factor).

22 / 24

Notes
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