
Adversarial Search

Tomáš Svoboda and Matěj Hoffmann

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

March 9, 2020

1 / 24

Notes

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Games, man vs. algorithm

I Deep Blue

I Alpha Go

I Deep Stack

I Why Games, actually?

Games are interesting for AI because they are hard (to solve).

2 / 24

Notes

Please note, the hyperlinks at the main slides are not active in the slides with notes. Hyperlinks within the notes

should be active, though.

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

Games, man vs. algorithm

I Deep Blue

I Alpha Go

I Deep Stack

I Why Games, actually?

Games are interesting for AI because they are hard (to solve).

2 / 24

Notes

Please note, the hyperlinks at the main slides are not active in the slides with notes. Hyperlinks within the notes

should be active, though.

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras

3 / 24

Notes

• Fooling Tesla autopilot by adversarial attack:

http://cmp.felk.cvut.cz/cmp/courses/B3B33KUI/videos/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras
https://www.techradar.com/news/researchers-tricked-a-tesla-model-s-into-speeding-with-a-piece-of-tape-how-could-hackers-cheat-our-cars-in-the-future

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize? Examples for some
games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png

4 / 24

Notes
Defining a game as a kind of search problem:

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize? Examples for some
games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png

4 / 24

Notes
Defining a game as a kind of search problem:

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize? Examples for some
games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png

4 / 24

Notes
Defining a game as a kind of search problem:

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize? Examples for some
games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png

4 / 24

Notes
Defining a game as a kind of search problem:

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize? Examples for some
games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png

4 / 24

Notes
Defining a game as a kind of search problem:

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize? Examples for some
games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png

4 / 24

Notes
Defining a game as a kind of search problem:

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Terminal utilitity: Zero–Sum and General games

I Zero-sum: players have opposite utilities (values)

I Zero-sum: playing against opponent

I General game: independent utilities

I General game: cooperations, competition, . . .

5 / 24

Notes
Most common games—such as chess—have these properties:

• two-player

• turn-taking

• deterministic with perfect information (a.k.a. deterministic, fully observable environments)

In some games, there is imperfect information (evironment is not fully observable). E.g., poker – no access to

what cards opponents hold.

Terminal utilitity: Zero–Sum and General games

I Zero-sum: players have opposite utilities (values)

I Zero-sum: playing against opponent

I General game: independent utilities

I General game: cooperations, competition, . . .

5 / 24

Notes
Most common games—such as chess—have these properties:

• two-player

• turn-taking

• deterministic with perfect information (a.k.a. deterministic, fully observable environments)

In some games, there is imperfect information (evironment is not fully observable). E.g., poker – no access to

what cards opponents hold.

Game Tree(s)

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Me (x)
thinking

Opp (o)
thinking

Me (x)
thinking

Opp (o)
thinking

terminal
states

Me playing

Me playing

Opp playing

Opp playing

Terminal-Utility(s,x)
<latexit sha1_base64="zdavbkJs7WA8sr3De73iVgu512I=">AAACSXicZVDLTtxAEBwvgZDlkQWOXEYsiUCClQ2HcERwyZFILCDh1ao9bsOImbE10yZYlv+Ar+EKf8AX5DNyizhldtmIACWNVKrqHnVVUijpKAx/Ba2pD9MzH2c/tefmFxY/d5aWT1xeWoF9kavcniXgUEmDfZKk8KywCDpReJpcHY7802u0TubmmKoCBxoujMykAPLSsPN1PSa8ISfqY7RaGlDb/hslqWo23FYdJxm/aTbXh51u2AvH4O9JNCFdNsHRcCmYi9NclBoNCQXOnUdhQYMaLEmhsGnHpcMCxBVc4LmnBjS6QT0O1PAvXkl5llv/DPGx+v9GDdq5Sid+UgNdurfeSHzxLBr8KXKtwaR1nIGWqkoxg1JRU8cu+8df30TZ3qCWpigJjXg+KSsVp5yPeuSptChIVZ6AsNKn4uISLAjybbfjAqw0qQ/Pfey2ry96W9Z7crLTi3Z74Y+d7v7BpMhZtsrW2AaL2De2z76zI9Zngt2yO3bPHoLH4HfwJ3h6Hm0Fk50V9gqtqb+gVLJP</latexit>

6 / 24

Notes

Init state, actions function, and result function defines game tree.

Note: game tree as opposed to search tree. Game tree are all possible evolutions of the game.

(With standard search, we similarly had state space graph vs. search tree.)

State Value V (s)

V (s) – value V of a state s : The best utility achievable from this state.

V (s) = max
s′∈children(s)

V (s ′)

7 / 24

Notes
Think about the State Value. It is a theoretical construct, definition. Depending on the problem, there may be
various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step. How would you compute the V (s) for

a given state s?

State Value V (s)

V (s) – value V of a state s : The best utility achievable from this state.

V (s) = max
s′∈children(s)

V (s ′)

7 / 24

Notes
Think about the State Value. It is a theoretical construct, definition. Depending on the problem, there may be
various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step. How would you compute the V (s) for

a given state s?

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 24

Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min
9 / 24

Notes
Max step: I want to maximize my outcome.

Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min
9 / 24

Notes
Max step: I want to maximize my outcome.

Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min
9 / 24

Notes
Max step: I want to maximize my outcome.

Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min
9 / 24

Notes
Max step: I want to maximize my outcome.

Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min
9 / 24

Notes
Max step: I want to maximize my outcome.

Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function 10 / 24

Notes

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function 10 / 24

Notes

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function 10 / 24

Notes

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function 10 / 24

Notes

A two ply game, down to terminal and back again . . .
function minimax(s) returns a

argmax
a∈Actions(s)

minval(res(s, a))

end function
function minval(s) returns v

if terminal(s) then util(s)
end if
v ←∞
for all actions(s) do

v ← min(v , maxval(res(s, a)))
end for

end function
function maxval(s) returns v

if terminal(s) then util(s)
end if
v ← −∞
for all actions(s) do

v ← max(v , minval(res(s, a)))
end for

end function

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

11 / 24

Notes

Before going to the animation on the next slide, try to follow the algorithm by a pencil and paper.

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 24

Notes
Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 24

Notes
Constraining the possible node values as search progresses...

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β pruning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 24

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values propage to towards the root
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.

α-β prunnig – How much can we save?

original: Time: O(bm)

I how to select nodes?

I perfect ordering?

15 / 24

Notes

It is clear that ordering of child nodes matters. Draw tree of α-β search in case of perferct ordering. Effective

branching factor becomes
√
b instead of b which effectively doubles the depth can be searched: Time: O(bm/2)

function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

16 / 24

Notes

Take the tree from the previous slide and try to go step-by-step, watch α, β and v

function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

16 / 24

Notes

Take the tree from the previous slide and try to go step-by-step, watch α, β and v

function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

16 / 24

Notes

Take the tree from the previous slide and try to go step-by-step, watch α, β and v

Recall: Iterative deepening DFS (ID-DFS)

I Start with maxdepth = 1

I Perform DFS with limited depth. Report success or failure.

I If failure, forget everything, increase maxdepth and repeat DFS

The “wasting” of resources is not too bad. Recall:

I Most nodes are at the deepest levels.

I Asymptotic complexity unchanged.

m
<latexit sha1_base64="4Gt0MY3yLD/OalBm/rL7VXeHCpc=">AAACJHicZVDLSgNBEJz1GeMzevQymAiewq4e9Ch68RjRJIIbQu9sbzJkZnaZmVXCkk/wqn/g13gTD178FicP8dXQUFR1Q1VFmeDG+v67Nze/sLi0XFopr66tb2xuVbZbJs01wyZLRapvIjAouMKm5VbgTaYRZCSwHQ3Ox3r7DrXhqbq2www7EnqKJ5yBddRVTda6W1W/7k+G/gfBDFTJbBrdircaxinLJSrLBBhzG/iZ7RSgLWcCR+UwN5gBG0APbx1UINF0ionXEd13TEyTVLtVlk7Ynx8FSGOGMnKXEmzf/NXG5LemUeE9S6UEFRdhApKLYYwJ5MKOitAkX/i3J5ucdAqustyiYlNLSS6oTem4IhpzjcyKoQPANHepKOuDBmZdkeUwA81V7MJTF7vs6gv+lvUftA7rwVHdvzysnp7NiiyRXbJHDkhAjskpuSAN0iSM9MgDeSRP3rP34r16b9PTOW/2s0N+jffxCWrApDw=</latexit>

1 node<latexit sha1_base64="jHZBbUzr1Fh9bD4SkqNLpPYDO5A=">AAACKXicZVDLSgNBEJz1GeMr0aOXwSh4Crt60GPQi8cIxgSyQXpne3VwHsvMrBKW/IRX/QO/xpt69UecxIivhoaiqhuqKskFty4MX4OZ2bn5hcXKUnV5ZXVtvVbfuLC6MAw7TAtteglYFFxhx3EnsJcbBJkI7CY3J2O9e4vGcq3O3TDHgYQrxTPOwHmqtxPtUKVTvKw1wmY4GfofRFPQINNpX9aD5TjVrJCoHBNgbT8KczcowTjOBI6qcWExB3YDV9j3UIFEOygnhkd01zMpzbTxqxydsD8/SpDWDmXiLyW4a/tXG5PfmkGFd0xLCSot4wwkF8MUMyiEG5Wxzb7wb08uOxqUXOWFQ8U+LWWFoE7TcU805QaZE0MPgBnuU1F2DQaY821W4xwMV6kPT33sqq8v+lvWf3Cx34wOmuHZfqN1PC2yQrbINtkjETkkLXJK2qRDGBHknjyQx+ApeA5egrfP05lg+rNJfk3w/gHYRKX4</latexit>

b nodes<latexit sha1_base64="X/txyhIIuDx49R6RKr7nMT/tLWE=">AAACKnicZVDLSgNBEJz1GeMzevQyGAVPYVcPehS9eFQwJpINoXe2VwfnsczMKmHJV3jVP/BrvIlXP8RJjKhJQ0NR1Q1VleSCWxeG78HM7Nz8wmJlqbq8srq2vlHbvLa6MAybTAtt2glYFFxh03EnsJ0bBJkIbCX3Z0O99YDGcq2uXD/HroRbxTPOwHnqZjfZpUqnaHsb9bARjoZOg2gM6mQ8F71asBynmhUSlWMCrO1EYe66JRjHmcBBNS4s5sDu4RY7HiqQaLvlyPGA7nkmpZk2fpWjI/bvRwnS2r5M/KUEd2cntSH5qxlU+Mi0lKDSMs5ActFPMYNCuEEZ2+wH//fksuNuyVVeOFTs21JWCOo0HRZFU26QOdH3AJjhPhVld2CAOV9nNc7BcJX68NTHrvr6osmypsH1QSM6bISXB/WT03GRFbJNdsg+icgROSHn5II0CSOSPJFn8hK8Bm/Be/DxfToTjH+2yL8JPr8AHtympg==</latexit>

b2 nodes<latexit sha1_base64="ZGTW0YYeXQcbuGbIvHUVnYaFmjc=">AAACLHicZVDLSgNBEJyN7/iKevQyGAVPYTce9Ch68ahgVMhG6Z3t1SHzWGZmlbDkM7zqH/g1XkS8+h1OYkQTGxqKqm6oqiQX3LowfAsqU9Mzs3PzC9XFpeWV1dra+oXVhWHYYlpoc5WARcEVthx3Aq9ygyATgZdJ93igX96jsVyrc9fLsSPhVvGMM3Ceam8n181tqnSK9qZWDxvhcOh/EI1AnYzm9GYtWIxTzQqJyjEB1rajMHedEozjTGC/GhcWc2BduMW2hwok2k459NynO55JaaaNX+XokP37UYK0ticTfynB3dlJbUD+agYVPjAtJai0jDOQXPRSzKAQrl/GNvvB455cdtApucoLh4p9W8oKQZ2mg6poyg0yJ3oeADPcp6LsDgww5wutxjkYrlIfnvrYVV9fNFnWf3DRbER7jfCsWT88GhU5TzbJFtklEdknh+SEnJIWYUSTR/JEnoOX4DV4Dz6+TyvB6GeDjE3w+QVpg6dK</latexit>

bm nodes<latexit sha1_base64="psCuRV1mt1LvxYwyneuj19UIUhU=">AAACLHicZVDLSgNBEJz1GeMzevQyGAVPYVcPehS9eIxgNJCN0jvbq4PzWGZmlbDkM7zqH/g1XkS8+h1OHqLRhoaiqhuqKskFty4M34Kp6ZnZufnKQnVxaXllda22fmF1YRi2mBbatBOwKLjCluNOYDs3CDIReJncnQz0y3s0lmt17no5diXcKJ5xBs5Tne3kSm5TpVO012v1sBEOh/4H0RjUyXia17VgMU41KyQqxwRY24nC3HVLMI4zgf1qXFjMgd3BDXY8VCDRdsuh5z7d8UxKM238KkeH7O+PEqS1PZn4Swnu1v7VBuSPZlDhA9NSgkrLOAPJRS/FDArh+mVss2886cllh92Sq7xwqNjIUlYI6jQdVEVTbpA50fMAmOE+FWW3YIA5X2g1zsFwlfrw1Meu+vqiv2X9Bxd7jWi/EZ7t1Y+Ox0VWyCbZIrskIgfkiJySJmkRRjR5JE/kOXgJXoP34GN0OhWMfzbIxASfX9Hqp4U=</latexit>

…………………

…

s
<latexit sha1_base64="r8gbB3BUNfto6YMSFfYvarzt09Y=">AAACJHicZVDLSgNBEJz1GeMzevQymAiewq4e9Ch68RjRJIIbQu9sbzJkZnaZmVXCkk/wqn/g13gTD178FicP8dXQUFR1Q1VFmeDG+v67Nze/sLi0XFopr66tb2xuVbZbJs01wyZLRapvIjAouMKm5VbgTaYRZCSwHQ3Ox3r7DrXhqbq2www7EnqKJ5yBddRVzdS6W1W/7k+G/gfBDFTJbBrdircaxinLJSrLBBhzG/iZ7RSgLWcCR+UwN5gBG0APbx1UINF0ionXEd13TEyTVLtVlk7Ynx8FSGOGMnKXEmzf/NXG5LemUeE9S6UEFRdhApKLYYwJ5MKOitAkX/i3J5ucdAqustyiYlNLSS6oTem4IhpzjcyKoQPANHepKOuDBmZdkeUwA81V7MJTF7vs6gv+lvUftA7rwVHdvzysnp7NiiyRXbJHDkhAjskpuSAN0iSM9MgDeSRP3rP34r16b9PTOW/2s0N+jffxCXU6pEI=</latexit> bs nodes<latexit sha1_base64="kR75eygmGA/ulNW+P3CFg39Zu38=">AAACLHicZVDLSgNBEJz1GeMzevQyGAVPYVcPehS9eIxgNJCN0jvbq4PzWGZmlbDkM7zqH/g1XkS8+h1OHqLRhoaiqhuqKskFty4M34Kp6ZnZufnKQnVxaXllda22fmF1YRi2mBbatBOwKLjCluNOYDs3CDIReJncnQz0y3s0lmt17no5diXcKJ5xBs5Tne3kym5TpVO012v1sBEOh/4H0RjUyXia17VgMU41KyQqxwRY24nC3HVLMI4zgf1qXFjMgd3BDXY8VCDRdsuh5z7d8UxKM238KkeH7O+PEqS1PZn4Swnu1v7VBuSPZlDhA9NSgkrLOAPJRS/FDArh+mVss2886cllh92Sq7xwqNjIUlYI6jQdVEVTbpA50fMAmOE+FWW3YIA5X2g1zsFwlfrw1Meu+vqiv2X9Bxd7jWi/EZ7t1Y+Ox0VWyCbZIrskIgfkiJySJmkRRjR5JE/kOXgJXoP34GN0OhWMfzbIxASfX9yIp4s=</latexit>

Bonus for α-β pruning: previous “shallower” iterations can be reused for node ordering.

17 / 24

Notes
α-β pruning is good. Still, in chess, for example, there is no way we can compute till the end.

Time is limited. We need to respond within a certain amount of time.
Possible solution: iterative deepening search. If I can’t complete the computation for the current depth, I can
use the previous shallower one that finished.

Imperfect but real-time decisions: iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

18 / 24

Notes

Even with perfect ordering, α-β pruning does not save us.

One problem left: can’t compute till then end, need to cut off, need for Evaluation function.

Imperfect but real-time decisions: iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

18 / 24

Notes

Even with perfect ordering, α-β pruning does not save us.

One problem left: can’t compute till then end, need to cut off, need for Evaluation function.

Imperfect but real-time decisions: iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

18 / 24

Notes

Even with perfect ordering, α-β pruning does not save us.

One problem left: can’t compute till then end, need to cut off, need for Evaluation function.

Imperfect but real-time decisions: iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

18 / 24

Notes

Even with perfect ordering, α-β pruning does not save us.

One problem left: can’t compute till then end, need to cut off, need for Evaluation function.

Cutting off search and evaluation functions

Replace
if terminal-test(s) then return terminal-utility(s)
with:
if cutoff-test(s,d) then return eval(s)

Historical note: cutting search off earlier and use of heuristic evaluation functions proposed by
Claude Shannon in Programming a Computer for Playing Chess (1950).

19 / 24

Notes

Cutting depends on d only, why we need s as the input parameter?

eval(s) – Evaluation functions

(estimate of) State value for non-terminal states
We need an easy-to-compute function correlated with “chance of winning”. For chess:

I Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

I Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

I Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

20 / 24

Notes
For many problems it is not so easy to find/construct proper function. We may try more functions and combine

them conveniently.
f1(s) = number of white pawns− number of black pawns

How to tune weights wi?
or Deep Nets! Yeah!

How to get training data for supervised learning? More later.

eval(s) – Evaluation functions

(estimate of) State value for non-terminal states
We need an easy-to-compute function correlated with “chance of winning”. For chess:

I Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

I Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

I Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

20 / 24

Notes
For many problems it is not so easy to find/construct proper function. We may try more functions and combine

them conveniently.
f1(s) = number of white pawns− number of black pawns

How to tune weights wi?
or Deep Nets! Yeah!

How to get training data for supervised learning? More later.

eval(s) – Problems
What if something important happens just beyond the current horizon of the search?

(b) White to move(a) White to move

Additional improvements:

I “Killer moves”—capturing opponent’s pieces, check etc.—should be considered first.
I Quiescence search – EVAL function should be applied only once things calm down.

During capturing of pieces, depth should be locally increased.
21 / 24

Notes

Computer play vs. grandmaster play

I Computers are better since 1997 (Deep Blue defeating Garry Kasparov).

I The way they play is still very different: “dumb”, relying on “brute force”.
I Grandmasters do not excel in being able to compute very deep—many moves ahead.

I They play based on experience: super-effective pruning and evaluation functions.
I They consider only 2 to 3 moves in most positions (branching factor).

22 / 24

Notes

References

Chapter 5, “Adversarial search” in [1].

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

23 / 24

Notes

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Minimax strategy
	Minimax algorithm
	Two-ply example

	Alpha-beta pruning
	Cut-off search
	References

