
Basics of linear algebra
in a nutshell

1 Vector spaces, base, coordinates
We start with a brief and intuitive summary of linear algebra principles, i. e. summary about vector
spaces. See materials of basic course of linear algebra for more information. Vector space V (or linear
space, it is the same) is a set of vectors. The vector ~u ∈ V is an abstract object which can be “scaled” by
arbitrary scalar s ∈ R using scalar multiplication s ~u ∈ V and two vectors ~u,~v ∈ V can be “combined”
using vector addition ~u + ~v ∈ V . These two operations must satisfy common (axiomatic) properties:
commutative and associative law for addition, associative law for scalar multiplication, distributive laws
and existence of the zero vector ~o, which is the only one such vector unable to be scaled: s~o = ~o ∀s ∈ R.
Vectors are abstract objects without any specific interpretation but there are many examples of vector
spaces: vector space of functions, vector space of polynomials, vector space of matrices etc. We will deal
with two specific vector spaces: geometrical vector space of free or bound vectors (see chapter 3 of [1])
and (of course) the Rn vector space of real n-tuples (written in columns). The scalar multiplication and
vector addition in geometrical vector space V are performed “mechanically” (using rulers) as described
in chapter 3 of [1]. On the other hand the scalar multiplication and vector addition in Rn are performed
“numerically”: t [u1, . . . , un]> = [tu1 . . . , tun]> and [u1, . . . , un]>+[v1, . . . , vn]> = [u1+v1, . . . , un+vn]>.

One of the main results of the linear algebra says that if an abstract vector space V has a finite
dimension n then there exist a mapping V → Rn which is an isomorphism. It means that all operations
executed with vectors in V can be executed with its representatives in Rn without loss of information.
So the results computed numerically in Rn can be interpreted back in abstract linear space V . All results
which are consequences of the two above mentioned operations in an abstract vector space have their
corresponding results in Rn. For example, we need not to deal with rulers and compasses in geometrical
vector space in order to provide operations and features of geometrical vectors, we can transform these
vectors to Rn and do these operations numerically (in computer, for example). Then the results can be
interpreted back in the geometrical vector space, which serves for visualization of results. The maping
V → Rn mentioned here is well known: ~u 7→ coordinates of the vector ~u w.r.t. a fixed chosen basis in V .

We remind what does mean basis in V and coordinates w.r.t. a basis. Let ~u1, . . . , ~um be a collection
of vectors from a vector space V . We are using the word “collection” (instead “set”), because the vectors
here are ordered and maybe there are more instances of one vector. The vector space defines only
two operations (scalar multiplication and vector addition), so when these operations are (repeatedly)
applied to such collection of vectors, then the result cannot be nothing but linear combination of the
vectors, i.e. the result is in the form x1~u1 + · · ·+ xn~un, where xi ∈ R are scalars. All such results (with
all possible scalars) fill a set M ⊂ V o vectors called span (~u1, . . . , ~un). We say that the collection of
vectors ~u1, . . . , ~um generates the set M . If it is possible to remove one vector from the collection without
changing its span, then we call that such collection of vectors are linearly dependent. Otherwise, the
collection of vectors is linearly independent. The maximal linear independent collection of vectors in V
(it is the same as minimal collection of vectors which generate V ) is called a basis of vector space V . It
is possible to prove that all bases of the same vector space V have the same number of vectors. This
number is called the dimension of V .

Let a basis β = (~b1, . . . ,~bn) of vectors in a vector space V be given. For each ~u ∈ V there exists
(because basis generates V ) only one (because basis is linear independent) ordered set of scalars xi ∈ R
with the property

~u = x1~b1 + · · ·+ xn~bn. This n-tuple of real numbers xi written in a column

 x1...
xn

 ∈ Rn (1)

is called coordinates of ~u with respect to the basis β. The notation of this n-tuple is ~uβ ∈ Rn. So the
mapping V → Rn mentioned above is realized by ~u 7→ ~uβ . It is possible to prove that such mapping is
an isomorphism.
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2 Change of basis, matrices of such change
When a basis β = (~b1, . . . ,~bn) in a vector space V is changed to another basis β′ = (~b′1, . . . ,~b

′
n) then

the coordinates of a vector ~u ∈ V w.r.t. the basis β should be different than its coordinates w.r.t. the
basis β′, in brief ~uβ 6= ~uβ′ . We will show how to find the matrix A ∈ Rn,n which transforms ~uβ to ~uβ′

using matrix product A~uβ = ~uβ′ for all ~u ∈ V .
Let [x1, . . . , xn]> ∈ Rn be a column of scalars and β = (~b1, . . . ,~bn) be a basis of V . We introduce

a very compact notation (β) ~x which denotes the linear combination of vectors ~bi with coefficients xi.
The notation respects common rules of matrix product: one-row matrix (β) of vectors is multiplied by
one-column matrix [x1, . . . , xn] of scalars. In more detail:

(β) ~x = [~b1, . . . ,~bn]

 x1...
xn

 = x1~b1 + · · ·+ xn~bn.

Using this compact notation, we can say that ~x ∈ Rn are coordinates of ~u ∈ V w.r.t. the basis β if and
only if ~u = (β)~x.

Let A ∈ Rn,n be a matrix of scalars, A = [~a1, . . . ,~an]. It means that ~ai is the i-th colum of matrix A.
Moreover, let β = (~b1, . . . ,~bn) be a basis of V . Then a collection of vectors ~u1, . . . , ~un such that ~ui = (β)~ai,
is denoted by (β)A. This notation respects common rules of matrix multiplication: one-row matrix of
vectors by n× n matrix of scalars gives one-row matrix of vectors.

Let β = (~b1, . . . ,~bn) and β′ = (~b′1, . . . ,~b
′
n) be two bases of a linear space V . Then the the matrix A

transforming coordinates from basis β to β′ is defined by

(~b1, . . . ,~bn) = (~b′1, . . . ,~b
′
n)A (2)

or in a more compact form by (β) = (β′)A. The following is true for such a matrix A:

(i) Matrix A exists for given bases β and β′. This matrix is unique.
(ii) The columns ~ai of the matrix A include coordinates of ~bi w.r.t. the basis β′.

(iii) The matrix A ∈ Rn,n and it is a regular matrix.
(iv) ~uβ′ = A~uβ

Note that the name of the matrix A is derived from the property (iv): for known coordinates of a
vector ~u ∈ V w.r.t. the basis β it is possible to calculate coordinates of ~u w.r.t. the basis β′ using the
matrix A. If a reverse transformation from β′ to β is needed, then inverse matrix A−1 must be used. The
property (ii) is direct consequence of equation (2). (ii) ⇒ (i) because the coordinates exist and they are
unique. The regularity in (iii) can be proven using argument that both collections of vectors in equation
(2) are linearly independent. The proof the (iv) follows. Let ~u ∈ V . Then ~u = (β)~uβ and ~u = (β′)~uβ′ .
From the associativite law of matrix multiplication we see that

(β′)~uβ′ = ~u = (β)~uβ = ((β′)A) ~uβ = (β′)(A~uβ)

and we see the coordinates of vector ~u w.r.t. basis β′ on both sides of the equation.
It is possible to do coordinate transformation via more bases in a given order of such bases. If we

known matrices which do particular coordinate transformations, then their matrix product is the matrix
of the composite coordinate transformation. More precisely, let there be bases β, γ, δ in a linear space V .
Let there be matrices A and B with properties A~uδ = ~uγ and B~uγ = ~uβ . Then the matrix product BA has
the property (BA)~uδ = ~uβ and it is matrix transforming coordinates from basis δ to β. This is a simple
consequence of associative law of matrix product: (BA)~uδ = B(A~uδ) = B~uγ = ~uβ .

3 Matrix of linear transformation
Let β = (~b1, . . . ,~bn) and T : V → V be a linear transformation. We define matrix A of the linear
transformation T w.r.t. the basis β by equation(

T (~b1), . . . , T (~bn)
)

= (~b1, . . . ,~bn)A. (3)
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The following is true for such matrix A w.r.t. the basis β:

(i) The matrix A exists and it is unique for every given transformation T and basis β.
(ii) The columns ~ai of the matrix A consist of the coordinates of T (~bi) w.r.t. the basis β.

(iii) A ∈ Rn,n.
(iv) The linear transformation T , defined by (3), uniquely exists for every given matrix A and basis β.
(v) T (~u)β = A ~uβ .

The property (ii) is a direct consequence of equation (3). (ii) ⇒ (i) because the coordinates exist
and they are unique. For proving (iv) we need to use the fact that if the values of a linear transformation
T are known on the basic vectors then T is defined uniquely for each vector ~u ∈ V . The consequence
of (i) and (iv) is that for a given basis β there exist one to one mapping between linear transformations
and their matrices. We omit the proof of (v). It is only technical and similar to the proof of the property
~uβ′ = A ~uβ .

We can conclude that for a matrix A transforming coordinates from basis β to β′, there holds
(β) = (β′)A and it is also matrix A of a linear transformation T which is defined by T (~b′i) = ~bi. Important
note: the linear transformation T derived from matrix A works in reverse direction (from β′ to β) than
the transformation of coordinates using the same matrix A.

We can write a short summary. Let β and β′ be two bases in a vector space V . The following
properties are equivalent.

• A transforms coordinates from β to β′ by ~uβ′ = A~uβ .
• (β) = (β′)A.
• A contains coordinates of ~bi w.r.t. the basis β′ in its columns ~ai.
• A is the matrix w.r.t. the basis β′ of a linear transformation T with given values T (~b′i) = ~bi.

Note that it is possible to construct composite linear transformations T2 ◦ T1 : V → V defined by
the rule (T2 ◦ T1)(~u) = T2

(
T1(~u)

)
. If A2 and A1 are corresponding matrices of T2 and T1 w.r.t. a basis β

and (T2 ◦ T1)(~u) = ~v, then A2A1~uβ = ~vβ . Roughly speaking: composite transformations are represented
by matrix product of the corresponding matrices.

There are elementary transformations in geometrical vector spaces: rotation, scaling, slanting, reflec-
tion. It can be proven that a general linear transformation is a composition of the mentioned elementary
transformations. Each elementary transformation has its very specific matrix. A general linear transfor-
mation can be represented by a matrix product of such specific matrices. We can imagine or visualize
such transformations in geometrical vector space and we can compute them in the vector space Rn of
their coordinates using matrices of such transformation.

4 Dot product
It is impossible to measure lengths of vectors and angles between them only by scalar multiplication and
vector addition. Sizes and angles are very natural quantities in geometrical vector spaces. This is the
reason why the dot product of two vectors as a new operation in vector space, is introduced.

We define the dot product in geometrical vector space V using geometrical tools only (rulers with
a scale and protractor). Main features will be shown. We keep in geometrical vector space during such
thinking. Then we show how to generalize this idea for abstract vector spaces where does not exist
ruler nor protractor. Finally, we will show how the dot product can be computed in Rn and what is the
relationship between dot product in geometrical vector space and dot product in Rn.

The size of each vector ~u ∈ V in a geometrical vector space can be measured using a ruler with
scale. We denote such size by ‖~u‖. Note that for nonzero vectors, it is a positive number and there is
the natural property of scalar multiplication: ‖s ~u‖ = |s| ‖~u‖. Really, scalar multiplication with s > 0
“scales” sizes of vectors. When s < 0 then scalar multiplication “scales” the vector and “reverses” its
orientation.

Let ~u,~v ∈ V be two nonzero vectors in a geometrical vector space. Denote ϕ the angle between then
(measured by a protractor) and ‖~u‖, ‖~v‖ their sizes. Then, we define the dot product of these vectors
~u · ~v as a real number:

~u · ~v = ‖~u‖ ‖~v‖ cosϕ (4)

If ~u or ~v is the zero vector, then ~u · ~v is defined as zero.
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The dot product can be defined without any need of cosϕ calculation using only geometrical tools:
do orthogonal projection of the vector ~u to span (~v) (i.e. to the line generated by ~v). More exactly the
projection determines the abscissa from origin to the projection point and we need to use a real number
r which is the length of the abscissa when ϕ ≤ 90◦ and r is minus its length when ϕ > 90◦. Then
~u · ~v = r ‖~v‖.

It should be proven only by geometrical tools and geometrical arguments, that for ~u · ~v there holds
true

(i) ~u · ~v = ~v · ~u (dot product is commutative),
(ii) (r~u + s~v) · ~w = r (~u · ~w) + s (~v · ~w), and the same is true in the 2nd argument (dot product is a

bi-linear form),
(iii) ~u · ~u ≥ 0 and ~u · ~u = 0 only if ~u = ~o (dot product is positively defined).

These properties (i)–(iii) are axioms of a general dot product. More exactly, these axioms should
be used as the definition of a dot product in any abstract vector space (with real scalars) where for
example rulers and protractors cannot be used. Let V be such an abstract vector space and let ~u · ~v be
a commutative bi-linear positively defined form. Then we define ‖~u‖ =

√
~u · ~v (the norm induced by the

given dot product) and for two nonzero vectors ~u, ~v there exists ϕ such that ~u · ~v = ‖~u‖ ‖~v‖ cosϕ. So,
we can measure sizes of abstract vectors and angles between them using a given commutative bi-linear
positively defined form.

The equation (4) says that nonzero vectors ~u,~v from a geometrical vector space are orthogonal if
and only if ~u · ~v = 0. It suggests the following generalization of “orthogonality” for any vector space V
with arbitrary dot product defined by (i)–(iii). Let ~u,~v ∈ V be two vectors. They are orthogonal if
~u · ~v = 0. Note that zero vector is orthogonal to every vector ~u ∈ V . Two vectors ~u,~v are orthonormal
if ‖~u‖ = ‖~v‖ = 1 and they are orthogonal. A collection of vectors in the vector space V is called
orthonormal (or orthogonal) if each pair of vectors from this collection are orthonormal (or orthogonal).

The scale-size property “‖r ~u‖ = |r| ‖~u‖”, Schwartz inequality “|~u ·~v| ≤ ‖~u‖ ‖~v‖”, triangle inequality
“‖~u + ~v‖ ≤ ‖~u‖ + ‖~v‖”, Pythagorean Theorem “‖~u‖2 + ‖~v‖2 = ‖~u + ~v‖2 if ~u · ~v = 0” and Cosine rule
“‖~u− ~v‖2 = ‖~u‖2 + ‖~v‖2 − 2(~u · ~v)” can be derived only from properties (i)–(iii). These Theorems have
very natural geometrical meaning but they are applicable for any abstract vector space.

When ~x, ~y ∈ Rn, then we can define the standard dot product in Rn by

~x · ~y = ~x>~y = [x1, . . . , xn]

 y1...
yn

 = x1y1 + · · ·+ xnyn. (5)

It is obvious that properties (i)–(iii) are true for the standard dot product in Rn, so we are authorized
to call it “dot product”. There exists a norm ‖~x‖2 induced by the standard dot product in Rn: ‖~x‖2 =√
~x>~x =

√
x21 + · · ·+ x2n. Another non-standard dot products in Rn exist, i.e. there hold (i)–(iii) true

for them, but we need not to deal with them here.
The relationship between a dot product in arbitrary vector space V and the standard dot product

in Rn can be formulated as follows. Let β be an orthonormal basis in a vector space V with a dot
product, ~u,~v ∈ V . Then ~u · ~v = ~u>β ~vβ . In other words: the dot product ~u · ~v can be computed using
coordinates of given vectors w.r.t. the othonormal basis β and using standard dot product in Rn. The
proof is straightforward: Let β = (~b1, . . . ,~bn), ~uβ = [x1, . . . , xn]> and ~vβ = [y1, . . . , yn]>. Then

~u · ~v = (x1~b1 + · · ·+ xn~bn) · (y1~b1 + · · ·+ yn~bn) =

= x1y1(~b1 ·~b1) + x1y2(~b1 ·~b2) + · · ·+ xnyn(~bn ·~bn) = x1y1 + · · ·+ xnyn = ~u>β ~vβ .

The property (ii) was used and the fact, that the basis β is orthonormal w.r.t. the dot product in V , so
~bi ·~bi = 1 and ~bi ·~bj = 0 for i 6= j. The consequence of this Theorem is ‖~u‖ = ‖~uβ‖2.

Two other very natural results can be simply proved for linear spaces V with dot product:

• If a collection of non-zero vectors in V is orthogonal then it is linearly independent.
• Let β is orthonormal basis in V and ~u ∈ V . Then the i-th coordinate of ~u w.r.t. β is ~u ·~bi.
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5 Vector product
Let us look an interesting mapping from L×L to L, the vector product or cross product. The set L must
be a linear space of dimension 3 or (specially) it is R3. We show two points of view to this mapping.

§1 Vector product from geometrical point of view. Let L be a linear space, dimL = 3. The
vector product of given linear independent vectors ~u, ~v is a vector ~w with features: (i) ~w is orthogonal
to the plane generated by ~u,~v, (ii) the length of ~w is equal to the area size of the parallelogram given by
the vectors ~u,~v and (iii) the vectors ~u,~v, ~w create the right-handed basis. We write ~w = ~u × ~v. When
the given vectors ~u,~v are linear dependent then ~u× ~v = ~o.

The direct consequence of such geometrical definition is:

(α~u)× ~v = ~u× (α~v) = α(~u× ~v) ∀α ∈ R,

~u× ~v = −~v × ~u.

§2 Vector product from numerical point of view. Let ~x = [x1, x2, x3]> and ~y = [y1, y2, y3]> are
given vectors from R3. Then vector product of these vectors is

~x× ~y =

x1x2
x3

×
 y1y2
y3

 =

 x2y3 − x3y2
−x1y3 + x3y1
x1y2 − x2y1

 =



∣∣∣∣x2 y2
x3 y3

∣∣∣∣
−
∣∣∣∣x1 y1
x3 y3

∣∣∣∣∣∣∣∣x1 y1
x2 y2

∣∣∣∣


(6)

We can derive this equation from following arguments: The vector product ~z = ~x×~y must be orthogonal
to ~x and ~y. So scalar products ~x>~z and ~y>~z must be equal to zero. This yields the system of linear
equations [

x1 x2 x3
y1 y2 y3

]
~z = ~o

When ~x and ~y are linearly independent then one non-zero solution of the linear system above is the cross
product defined by (6), so ~z satisfies the condition (i) from §1. In order to prove conditions (ii) and (iii)
from §1 we need to calculate the determinant

V = |~x ~y ~z| =

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ = z1

∣∣∣∣x2 y2
x3 y3

∣∣∣∣− z2 ∣∣∣∣x1 y1
x3 y3

∣∣∣∣+ z3

∣∣∣∣x1 y1
x2 y2

∣∣∣∣ = z21 + z22 + z23 = ‖z‖2

We used the Laplace expansion of the determinant along third column. Because V is positive the ~x, ~y, ~z
create right-handed basis (if ~x, ~y are linearly independent), so (iii) from §1 is satisfied. V is the volume
of the parallelepiped given by ~x, ~y, ~z and this volume can be also calculated as S h where S is the area
size of the parallelogram given by ~x, ~y and h is the height of the parallelepiped. Because h = ‖z‖ and
S h = V = ‖z‖2, we see that ‖z‖ = S and the condition (ii) from §1 is proved. Moreower, if ~x, ~y are
linearly dependent then V = 0, so ‖z‖2 = 0 and z must be null vector.

§3 Determinant and vector product. The equation |~x ~y ~s| = (~x× ~y)> ~s is true because:∣∣∣∣∣∣
x1 y1 s1
x2 y2 s2
x3 y3 s3

∣∣∣∣∣∣ = s1

∣∣∣∣x2 y2
x3 y3

∣∣∣∣− s2 ∣∣∣∣x1 y1
x3 y3

∣∣∣∣+ s3

∣∣∣∣x1 y1
x2 y2

∣∣∣∣ = (~x× ~y)> ~s.

§4 Vector product under the change of basis. Let us we study the behavior of the vector product
under the change of basis. Let us we have two bases β, β′ in R3 (or in general linear space L with
dimension 3) and two vectors ~x and ~y in this space. Let A be a matrix transforming coordinates from
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basis β to basis β′. It means that ~xβ′ = A~xβ and ~yβ′ = A~yβ . Because of §3 the following is true for
arbitrary vector ~s ∈ R3

(~xβ′ × ~yβ′)>~s =

| ~xβ′ ~yβ′ ~s | = | A~xβ A~yβ ~s | =
| A [~xβ ~yβ A−1~s ] | = |A| | ~xβ ~yβ A−1~s | = |A| (~xβ × ~yβ)>(A−1~s ) =

|A| (A−T (~xβ × ~yβ))>~s.

We see that (~xβ′×~yβ′)>~s = |A| (A−T (~xβ×~yβ))>~s for all ~s ∈ R3 (especially for ~s = [100] or [010] or [001]).
This implies that ~xβ′ × ~yβ′ = |A| A−T (~xβ × ~yβ). We can write it as result:

~xβ′ × ~yβ′ =
A−T

|A−T |
(~xβ × ~yβ)

because |A−1| = 1/|A| and |A>| = |A|.

6 Change of coordinate systems in an affine space
In all the text above, we were working with “geometrical vector space” and it was possible to imagine
it as vector space of bound vectors which is equivalent to a vector space of points, where points are the
end-points of associate bound vectors. But there is a problem: the very natural transformation “shifting
of all points by desired vector” cannot be represented by a linear transformation. So, we need a more
advanced mathematical model.

Chapter 3 of [3] introduces the affine space, which is a pair of sets (V,X), where V is vector space of
free vectors (with scalar multiplication and vector addition) and X is a set of points. The vectors from
V and points from X are interconnected by new two operations “PLUS” and “MINUS”:

• Operation point P ∈ X PLUS vector ~v ∈ V gives a point ∈ X which is an end-point of a represen-
tative of the vector ~v if such representative starts from point P .
• Operation point P ∈ X MINUS point Q ∈ X gives a vector ∈ V which representative starts in P

and ends in Q.

All operations: scalar multiplication, vector addition on V and PLUS, MINUS operations on V,X
can be defined using pure geometrical tools. It is shown in chapter 3 of [1] in detail. We will note the
PLUS and MINUS operations by the symbols + and −. Points from X will be denoted by uppercase
letters (P,Q,R, . . .) and vectors as usual: ~u,~v, ~w, . . . When r ∈ R then legal operations are: (r~u) ∈ V ,
(~u+ ~v) ∈ V , (P + r~u) ∈ X, (P −Q) ∈ V . Illegal operations are (for example): rP , P +Q.

In the following text, we introduce extended coordinates of vectors from V and points from X w.r.t.
a coordinate system. The coordinate system is pair: a basis β = (~b1, . . . ,~bn) of V and a point O from X.
The coordinate system is denoted by (β,O). The point O is called origin of the coordinate system. The
radius vector of a point P ∈ X w.r.t. coordinate system (β,O) is the vector P −O. The coordinates of
~v ∈ V w.r.t. (β,O) are denoted ~vβ,O and the coordinates of P ∈ X w.r.t. (β,O) are denoted by Pβ,O.
They both are (n+1)tuples from Rn+1 defined by

~vβ,O =

[
~vβ
0

]
, Pβ,O =

[
(P −O)β

1

]
.

Note that coordinates of a vector w.r.t. the system (β,O) are coordinates w.r.t. the basis β and “0”
is added. The coordinates of a point are coordinates of its radius vector w.r.t. the basis β and “1” is
added. This last coordinate (0 or 1) is type-info, because we are able to detect from this coordinate if it
is a vector or a point. Sometimes, the type-info coordinate is not mentioned when we are talking about
coordinates of vectors or points and the type of the object is known. But we will show, that type-info
plays very important role during calculation of coordinates by matrices.

There exists an “isomoprhism” between objects from V,X and their coordinates from Rn+1 which
keeps all operations: scalar multiplication, vector addition in V and PLUS, MINUS operations. The
last two mentioned operations are mapped to common + and − in Rn+1. This “isomorphism” maps
(of course) vectors and points to their coordinates w.r.t. fixed chosen coordinate system. This is very
flexible tool for computing with points and free vectors.
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Note that the type-info coordinate allows to do legal operations with points and vectors (and their
coordinates) but illegal operations like rP , P +Q yields to “out of range” from the values {0, 1}.

Suppose that two coordinate systems (β,O) and (β,O′) are given in an affine space (V,X). The
matrix G ∈ Rn+1,n+1 transforming coordinates of vectors and points w.r.t. the coordinate system (β,O)
to their coordinates w.r.t. (β′, O′) is defined by

(~b1, . . . ,~bn, O) = (~b′1, . . . ,~b
′
n, O

′) G

This is analogue definition to (2), so there are analogue properties:

(i) Matrix G exists for every given coordinate systems (β,O) and (β′, O′). This matrix is unique.
(ii) First n columns ~gi of the matrix G include coordinates of ~bi w.r.t. the coordinate system (β′, O′),

the last column of G includes coordinates of the point O w.r.t. the coordinate system (β′, O′).
(iii) The matrix G is regular matrix.
(iv) G ~uβ,O = ~uβ′,O′ , GPβ,O = Pβ′,O′ for all vectors ~u ∈ V and for all points P ∈ X.

The property (iv) gives simple way to convert coordinates of points from one coordinate system to
another even if the origin O of the coordinate system is shifted to another position O′. The coordinates
of vectors are converted by the matrix G with the same results as converting using the matrix A from
equation (2). The matrix G can be written in block form

G =

[
A ~c
~o 1

]
where A ∈ Rn,n is the matrix transforming coordinates from the basis β to the basis β′, ~c ∈ Rn includes
coordinates of the radius vector (O−O′) w.r.t. the basis β′, i.e. ~c = (O−O′)β′ and finally ~o ∈ R1,n is a
row with zeros. If we need to do the reverse coordinate transformation then we need to use the inverse
of G which is in the form

G−1 =

[
A−1 −A−1~c
~o 1

]
.

It is possible to do coordinate transformation via more coordinate systems in given order of such
systems. If we known matrices which do particular coordinate transformations, then their matrix product
is the matrix of composite coordinate transformation. More precisely, let there be coordinate systems
(β,O), (γ, P ), (δ,Q) in an affine space (V,X). Let there be matrices G and H with properties GDδ,Q =
Dγ,P and HDγ,P = Dβ,O for every point D ∈ X. Then the matrix product HG has the property
(HG)Dδ.Q = Dβ,O and it is a matrix transforming coordinates from coordinate system (δ,Q) to (β,O).
This is a simple consequence of associative law of matrix product: (HG)Dδ,Q = H(GDδ,Q) = HDγ,P =
Dβ,O.

Example (from alpha test, exercise 5). Two coordinate systems (~b1,~b2, O) and (~b′1,~b
′
2, O

′) are given on
the figure below

We need to find the rules for transformation coordinates of arbitrary point with coordinates [x, y]
w.r.t. the system (~b1,~b2, O) to its coordinates [x′, y′] w.r.t. the system (~b′1,~b

′
2, O

′). The transformation
matrix is defined by:

(~b1,~b2, O) = (~b′1,~b
′
2, O

′) G

and it includes the coordinates of vector ~b1 w.r.t. (~b′1,~b
′
2, O

′) in first column, and the coordinates of
vector ~b2 w.r.t. (~b′1,~b

′
2, O

′) in second column (the last type-info element is 0 in both cases because they

7



are vectors). G includes coordinates of the point O w.r.t. (~b′1,~b
′
2, O

′) in the third column (here is 1 as the
last element, because it is a point). So:

G =

 0 −2 2
2 0 −1
0 0 1

 ,
x′y′

1

 =

 0 −2 2
2 0 −1
0 0 1

xy
1

 , x′ = −2y + 2
y′ = 2x− 1

Example (Image projection matrix). The matrix transforming coordinates of point from the coordinates
w.r.t. a world coordinate system (δ,O) to coordinates w.r.t. a camera coordinate system (β,C) is known
as an image projection matrix. This matrix Pβ is defined by

(~d1, ~d2, ~d3, O) = (~b1,~b2,~b3, C) Pβ

but the last row of the matrix is omited because we know that the results are points and we don’t have
to calculate type-info of the results. So ~P ∈ R3,4 and it is in the block form

Pβ = [A |~c]

where A is a matrix transforming coordinates w.r.t. δ to coordinates w.r.t. β and ~c = (O−C)β . It is more
common that we know coordinates of the point C w.r.t. (δ,O), i.e. Cδ = (C − O)δ. We can calculate
~c = −ACδ because ACδ,O = A (C −O)δ = (C −O)β = −(O − C)β = −~c.

Notice. Extended coordinates introduced here are also known as homogeneous coordinates. But the
concept of homogeneous coordinates is slightly more general: points in an affine space with dim = n are
represented by lines in a vector space with dim = n + 1. For more information, see the section 9.2.5
in [1].

7 Affine transformations
Let (V,X) be an affine space with a coordinate system (β,O) = (~b1, . . . ,~bn). Suppose, we have a
transformation T : V ∪X → V ∪X, which transforms vectors the same way as a linear transformation
T ′ : V → V does it and it transforms points P ∈ X by the following manner: create radius vector
(P − O), transform it by T ′ and finally shift the resulting end-point by given fixed vector ~s. More
precisely: T (~u) = T ′(~u) and T (P ) = O+ T ′(P −O) + ~s. Then T is called affine transformation and the
transformation T ′ is called associated linear transformation with T . More lapidary: affine transformation
is linear transformation plus shifting points.

The affine transformation T has its matrix G ∈ Rn+1,n+1 w.r.t. the coordinate system (β,O) defined
by the equation: (

T (~b1), . . . T (~bn), T (O)
)

= (~b1, . . . ,~bn, O) G (7)

This is analogue to the equation (3), thus the following properties about the matrix G are true:

(i) The matrix G exists and it is unique for every given transformation T and coordinate system (β,O).
(ii) First n columns ~gi of the matrix G include the coordinates of T (~bi) w.r.t. the coordinate system (β,O).

The last column includes the coordinates of the point T (O) w.r.t. the coordinate system (β,O).
(iii) The affine transformation T is defined by the equation (7) uniquely and it exists for every given

matrix G and given coordinate system (β,O).
(iv) T (~u)β,O = G ~uβ,O for all ~u ∈ V and T (P )β,O = GPβ,O for all P ∈ X.

The property (iv) gives a way to calculate coordinates of T (~v) and T (P ) when the coordinates of
vector ~v or point P are known. The matrix G defined above can be written in block form like

G =

[
A ~c
~o 1

]
where A is the matrix of the associated linear transformation T ′ : V → V and ~c = (T (O)−O)β .

The matrix of a composite affine transformation can be calculated as matrix product of matrices of
particular transformations. This si analogue of composite linear transformation and its matrix mentioned
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in section 3. If an affine transformation T has its matrix G and it is bijective then its inverse has the
matrix G−1.

We can see that the matrix G transforming coordinates from coordinate system (β,O) to (β′, O′)
holds (β,O) = (β′, O′)G and it is also matrix G of an affine transformation T which is defined by T (~b′i) = ~bi,
T (O) = O′. Important notice: the affine transformation T derived from such matrix G works in direction
from (β′, O′) to (β,O) which is opposite to the transformation of coordinates using the same matrix G.
If we need to use the matrix of an inverse affine transformation, then G−1 must be used.

We can write a short summary. Let (β,O) and (β′, O′) be two coordinate systems in a vector
space V . The following properties are equivalent.

• G transforms coordinates from (β,O) to (β′, O) by G ~uβ,O = ~uβ′,O′ and GPβ,O = Pβ′,O′ .
• (β,O) = (β′, O′)G.
• G includes coordinates of~bi w.r.t. (β′, O′) in its first n columns ~ai and includes coordinates of (O−O′)

w.r.t. (β′, O′) in its last column.
• G is matrix of an affine transformation T with given values T (~b′i) = ~bi, T (O) = O′.
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