Fundamental matrix, properties

Suppose two cameras with camera projection matrices P_1 and P_2 , i.e. there are three bases δ , β_1 and β_2 (first one is orthonormal basis from world coordinate system). There exist transformation matrices A_1 , A_2 and camera centers C_1 and C_2 such that

$$\mathbf{P}_1 = [\mathbf{A}_1 \mid -\mathbf{A}_1 \, \vec{C}_{1\delta}], \quad \mathbf{P}_2 = [\mathbf{A}_2 \mid -\mathbf{A}_2 \, \vec{C}_{2\delta}]$$

Note that $\vec{x}_{\beta_i} = \mathbf{A}_i \vec{x}_\delta$ for arbitrary vector \vec{x} , so $\vec{x}_\delta = \mathbf{A}_i^{-1} \vec{x}_{\beta_i}$.

The fundamental matrix ${\tt F}$ is defined by

$$\mathbf{F} = \mathbf{A}_2^{-\top} \left([C_{2\delta} - C_{1\delta}]_{\times} \right) \mathbf{A}_1^{-1}.$$

where $[\vec{u}]_{\times} \in \mathbb{R}^{3\times 3}$ is a matrix which does "vector product calculation using matrix multiplication". More precisely, $([\vec{u}_{\delta}]_{\times}) \vec{v}_{\delta}$ gives coordinates of vector product $\vec{u} \times \vec{v}$ w.r.t. the basis δ . But there is an important condition: the basis δ must be other ormal. If $\vec{u}_{\delta} = [u_1, u_2, u_3]^{\top}$ and $\vec{v}_{\delta} = [v_1, v_2, v_3]^{\top}$ then

$$\begin{bmatrix} \vec{u}_{\delta} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -u_1 v_3 + u_3 v_1 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = (\vec{u} \times \vec{v})_{\delta}$$

It is obvious that rank of $[\vec{u}_{\delta}]_{\times}$ is two for nonzero \vec{u} , so rank $\mathbf{F} = 2$ for different camera centers.

Suppose the figure 12.2 from [1], where \vec{x}_i are projections of a point X, \vec{e}_i are eipoles, \vec{l}_i are epipolar lines and XC_1C_2 is epipolar plane σ . We'll prove the following properties of the fundamental matrix F:

$$(\vec{x}_{2\beta_2})^{\top} \mathbf{F} \, \vec{x}_{1\beta_1} = 0 \tag{1}$$

$$\mathbf{F}\,\vec{e}_{1\beta_1} = \vec{0} \tag{2}$$

$$\mathbf{F}^{\top}\vec{e}_{2\beta_2} = \vec{0} \tag{3}$$

$$\vec{l}_{1\bar{\beta}_1} = \mathbf{F}^\top \vec{x}_{2\beta_2} \tag{4}$$

$$\vec{l}_{2\bar{\beta}_2} = \mathbf{F} \, \vec{x}_{1\beta_1} \tag{5}$$

Ad (1):

$$\begin{split} (\vec{x}_{2\beta_2})^{\top} \mathbf{F} \, \vec{x}_{1\beta_1} &= (\vec{x}_{2\beta_2})^{\top} \mathbf{A}_2^{-\top} ([C_{2\delta} - C_{1\delta}]_{\times}) \, \mathbf{A}_1^{-1} \, \vec{x}_{1\beta_1} \\ &= (\mathbf{A}^{-1} \vec{x}_{2\beta_2})^{\top} ([C_{2\delta} - C_{1\delta}]_{\times}) \, \vec{x}_{1\delta} = (\vec{x}_{2\delta})^{\top} ((\vec{C}_2 - \vec{C}_1) \times \vec{x}_1)_{\delta}. \end{split}$$

Because the vector $((\vec{C}_1 - \vec{C}_1) \times \vec{x}_1)$ is perpendicular to the epipolar plane σ and the vector \vec{x}_2 is included in the epipolar plane σ , the dot product of these vectors must be zero. And the dot product of coordinates of these vectors w.r.t. orthonormal basis is zero too.

Ad (2):

$$\mathbf{F}\,\vec{e}_{1\beta_{1}} = \mathbf{A}_{2}^{-\top}([C_{2\delta} - C_{1\delta}]_{\times})\,\mathbf{A}_{1}^{-1}\,\vec{e}_{1\beta_{1}} = \mathbf{A}_{2}^{-\top}([C_{2\delta} - C_{1\delta}]_{\times})\,\vec{e}_{1\delta} = \mathbf{A}_{2}^{-\top}((\vec{C}_{2} - \vec{C}_{1})\times\vec{e}_{1})_{\delta}.$$

Because \vec{e}_1 is parallel with $\vec{C}_2 - \vec{C}_1$, the vector product must be zero vector. So, we have $\mathbf{A}_2^{-1}\vec{0} = \vec{0}$. Ad (3):

$$\mathbf{F}^{\top}\vec{e}_{2\beta_{2}} = \mathbf{A}_{1}^{-\top}([C_{2\delta} - C_{1\delta}]_{\times})^{\top}\mathbf{A}_{2}^{-1}\vec{e}_{2\beta_{2}} = -\mathbf{A}_{1}^{-\top}([C_{2\delta} - C_{1\delta}]_{\times})\vec{e}_{2\delta} = -\mathbf{A}_{1}^{-\top}((\vec{C}_{2} - \vec{C}_{1}) \times \vec{e}_{2})_{\delta}.$$

Because \vec{e}_2 is parallel with $\vec{C}_2 - \vec{C}_1$, the vector product must be zero vector. So, we have $-\mathbf{A}_1^{-\top}\vec{\mathbf{0}} = \vec{\mathbf{0}}$. Ad (4): We know that $(\vec{x}_{2\beta_2})^{\top}\mathbf{F} \vec{e}_{1\beta_1} = 0$ from (2) and $(\vec{x}_{2\beta_2})^{\top}\mathbf{F} \vec{x}_{1\beta_1} = 0$ from (1). These two equations say $\vec{z}^{\top}\vec{e}_{1\beta_1} = 0$ and $\vec{z}^{\top}\vec{x}_{1\beta_1} = 0$ when $\vec{z} = \mathbf{F}^{\top}\vec{x}_{2\beta_2}$. It means that \vec{z} includes homogeneous coordinates of a line which goes through the points \vec{e}_1 and \vec{x}_1 . But this is epipolar line, so $\vec{z} = \vec{l}_{1\beta_1}$. The property (5) should be proven analogous.

^[1] Tomas Pajdla: Elements of Geometry for Computer Vision (text available in materials of "Geometry of Computer Vision and Computer Graphics" Course)