
Camera calibration and pose
Image projection matrix Pβ = [A |~c ] transforms coordinates of points w.r.t. world coordinate system

O, δ to camera coordinate system C, β. Two facts are included in such transformation: a camera pose
(moving of the camera and its orientation in the space) and camera calibration (the internal geometrical
features of the camera, focal length, pixels width etc.). It is possible to separate these two facts into
two matrices: R (matrix of rotation) and K (camera calibration matrix) such a way, that A = K R (matrix
product). The moving from origin O to origin C is done by fourth column of Pβ which is equal to −ACδ.
The features of matrices R and K will be studied in this text.

1 Rotation and its matrix
Matrix R ∈ Rn×n is called orthogonal, if its columns are orthonormal vectors in Rn. Note1: “orthogo-
nality” and “orthonormality” of vectors in Rn are measured using standard dot product: ~x · ~y = ~x>~y.
Note2: the terminology is somewhat confusing because orthogonal matrix has orthonormal columns, but
this is traditional notation.

It follows from matrix multiplication that if R is orthogonal then R>R = I, so R is regular and its
inverse is R>. Matrix calculus says that there is only one matrix inversion A−1A = I = AA−1, so for the
orthogonal matrix R, it holds R R> = I too. This means that if R is orthogonal then it has orthonormal
rows too. Laplace Theorem says that 1 = det I = det(R>R) = (det R)(det R), so det R must be ±1.

Let δ = (~d1, . . . , ~dn) be an orthonormal basis in a vector space V with a dot product, dimV = n.
Let R ∈ Rn×n be an orthogonal matrix. Denote by TR the transformation V → V with its matrix R
w.r.t. the basis δ. Remember that(

TR(~d1), . . . , TR(~dn)
)

= (~d1, . . . , ~dn) R.

Then ∀ ~u,~v ∈ V : ~u · ~v = TR(~u) · TR(~v) = ~u>δ ~vδ. This Theorem says that transformations derived
from orthogonal matrix keeps dot product unchanged. It means that it keeps all features induced by
dot product (sizes and angles) unchanged. Especially if ~u,~v are orthonormal then TR(~u), TR(~v) are
orthonormal too. The proof of this Theorem is simple:

TR(~u) · TR(~v) = (R ~uδ)
>(R~vδ) = ~u>δ R

>R~vδ = ~u>δ I~vδ = ~u>δ ~vδ = ~u · ~v.

How does the transformations TR look like from a geometrical point of view? Imagine an orthonormal
basis δ and its transformation TR(δ). The TR(δ) must be orthonormal too. This is possible only if TR is
a rotation or rotation plus reflection.

Because det R = ±1 and it measures the oriented volume of a n-cube given by the basis TR(δ), then
we can see that TR is rotation if det R = 1 and TR is rotation plus reflection if det R = −1.

We can do a reverse walk: from a transformation T : V → V which is rotation to its matrix R. We
will show that such matrix must be orthogonal and det R = 1. Because T is rotation then it keeps sizes
and angles, so it keeps dot product. This means that the following equation must be true:

TR(~u) · TR(~v) = (R~uδ)
>(R~vδ) = ~u>δ R

>R~vδ = ~u>δ ~vδ = ~u · ~v

for every ~u,~v in V . Only a matrix with property R>R = I can do this, so R must be orthogonal. Because
rotation does not change a positivity of oriented volumes then det R = 1.

2 KR decomposition
The image projection matrix Pβ = [A |~c ] is given (A is regular). We need to find the focal length f 6= 0
and the matrices K, R, where K is regular upper triangular with K3,3 = 1 (camera calibration matrix) and
R is orthogonal with det R = 1 (matrix of rotation) and fA = K R. The matrices A, K, R ∈ R3×3.
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The decomposition of a given regular matrix A to the product of two matrices, the first is orthogonal,
the second is upper triangular, is well known as QR decomposition (which is equal to Gram-Schmidt
orthogonalization process from matrices point of view). But our problem needs to do the decomposition
with reverse order of matrices: the first matrix is upper triangular and the second matrix is orthogonal.
We will show two methods: a direct computation and a conversion of given problem to QR decomposition
using transposed and permutation matrices.

1. Direct computation. The equation fA = KR can be written in more detail as: f ~a>1f ~a>2
f ~a>3

 =

 k l m
0 n p
0 0 1

~r>1~r>2
~r>3


where ~a>i are rows of the given matrix A and ~r>i are rows of the (unknown) orthogonal matrix R. From
the last row of this equation we see that

f ~a>3 = 0 + 0 + 1~r>3

Because ‖~r3‖ = 1 (R is orthogonal), we have the first result: f = 1/‖~a3‖ and ~r3 = f~a3.
Denote B = fA (now, this is known matrix). We are finding matrices K, R such that B = K R. Moreover

the last row of the matrix B is equal to the last row of the matrix R and the problem can be written as:~b>1~b>2
~b>3

 =

 k l m
0 n p
0 0 1

~r>1~r>2
~r>3

 (1)

where ~b>i = f~a>i are lines of the matrix B. Now, we apply multiplication of the first and the second line
by ~r3 (it is a known vector at this state of computation):

~b>1 ~r3 = k ~r>1 ~r3 + l ~r>2 ~r
>
3 +m~r>3 ~r3 = m

~b>2 ~r3 = 0 + n~r>2 ~r
>
3 + p~r>3 ~r3 = p

The orthogonality of matrix R was used, i. e. ~ri are orthonormal vectors. The coefficients m and p are
computed from the equations above. Next step is Gauss-Jordan elimination applied on both sides of the
equation (1): −p times the last row is added to the second and −m times the last row is added to the
first row. ~b>1 −m~b>3~b>2 − p~b>3

~b>3

 =

 k l 0
0 n 0
0 0 1

~r>1~r>2
~r>3

 (2)

The second row says that the known vector~b>2 −p~b>3 is equal to n~r>2 . This gives the result n = ‖~b2−p~b3‖
(because ‖~r2‖ = 1) and ~r2 = (1/n)(~b2 − p~b3). Now, we know values of f, p,m, n,~r3, ~r2 and all vectors
at the left side of the equation (2). We will repeat the similar steps again. Multiply the first line of the
equation (2) by previously calculated vector ~r2 with result: (~b>1 −m~b>3 )~r2 = k ~r>1 ~r2 + l ~r>2 ~r2 = l. This
equation calculates l value. Do the Gauss-Jordan elimination at both sides of the equation (2):n (~b>1 −m~b>3 )− l (~b>2 − p~b>3 )

~b>2 − p~b>3
~b>3

 =

 k 0 0
0 n 0
0 0 1

~r>1~r>2
~r>3


Denote the vector ~u = n (~b1 −m~b3) − l (~b2 − p~b3). This vector is known (and nonzero, because B is a
regular matrix). The first row says ~u> = k ~r>1 and we get the final result k = ‖~u‖ and ~r1 = (1/k)~u.
All elements of matrices K, R are known, the decomposition is completed. Because n, k are positive, then
det K = kn > 0. If det A > 0 then must be det R = +1.

But a little problem can arise in a special situation when det A < 0. Then det R = −1, but we
need a matrix of rotation here, no reflection. We can modify orthogonal matrix R in order to it keeps
its orthogonality: (i) first row can be multiplied by −1 or (ii) second row can be multiplied by −1 or
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(iii) whole matrix R can be multiplied by −1. The new matrix R is matrix of rotation. In order to
keep the equation fA = K R we have to do modifications which depends on the modifications of matrix R
mentioned above: (i) multiply k by −1 or (ii) multiply n and l by −1 or (iii) multiply f by −1. Which
alternative is used depends on our knowledge about the geometry of basis β.

Note that the projection matrix Pβ = [A |~c ] has its fourth column ~c = −ACδ. If we need to calculate
the coordinates of the projection center point C w.r.t. the world coordinate system (i. e. Cδ) and the
matrix Pβ is given then we need to calculate Cδ = −A−1~c or we need to compute the solution of the
linear equation system with extended matrix [A | − ~c ].

2. KR decomposition using QR decomposition. Assume that we have a computer which is able
to provide QR decomposition of given matrix A, for example [Q R] = qr(A) in Matlab. Note that QR
decomposition is quite common algorithm but RQ decomposition is rarely accessible. Important notice:
we have a notation mishmash here: R is an orthogonal matrix in our notation but R is upper a diagonal
matrix and Q is an orthogonal matrix in common notation used in QR algorithm. This is the reason why
we introduce new name of the output of QR algorithm: [Q U] = qr(A).

A regular matrix A is given and we need to find an orthogonal matrix Q and an upper triangular
matrix U with the condition A = U Q. We can use a (more common) QR algorithm which does A = Q U
decomposition in a computer.

Let us consider a permutation matrix

P =

 0 0 1
0 1 0
1 0 0


The problem can be simply generalized for arbitrary dimension of matrices but matrices in R3×3 are
sufficient for our purpose. Note that PA reverses the order of rows and AP reverses the order of columns
of the matrix A. Permutation matrices are orthogonal: PP> = P>P = I. Moreover P = P>, so PP = I.
Reverse rows of the the given matrix A to get A1 = PA. Then use QR decomposition on the transposition
matrix A>1 = Q1U1. We will show that the matrix Q = PQ>1 is orthogonal and U = PU>1 P is upper triangular
and these matrices hold the desired equation A = UQ. Why the matrix PQ>1 is orthogonal? Because

(PQ>1 )(PQ>1 )> = PQ>1 Q1P
> = PIP> = I.

Why the matrix PU>1 P is upper triangular? First, the transposition is applied, so U>1 is lower triangular.
Then the rows are arranged in reverse order (we get the “triangularity” along collateral diagonal) and
then the columns are reversed and we get upper triangular matrix again. Why A = UQ? Because

U Q = (PU>1 P) (PQ>1 ) = PU>1 Q
>
1 = P(Q1U1)

> = P A1 = P(P−1A) = A.

The result of this process is an upper triangular matrix U with U3,3 = (1/f). We need to calculate K = f U
in order to get an upper triangular matrix K with the condition K3,3 = 1. Moreover, f = 1/U3,3 is focal
length, if Pβ = [A |~c ] is an image projection matrix.

3 Elements of the calibration matrix K
If the geometry of basis β = (~b1,~b2,~b3) is known (i. e. the basis of the camera coordinate system), then
the values of elements of upper triangular calibration matrix K can be expressed using sizes of vectors
~bi, angles between them and using focal length f . The corresponding equations will be derived in this
section. The meanings of the elements of the matrix K will be clarified from these equations. The
equations will also enable to recover geometry of β from a known matrix K.

The equation fA = KR can be expressed in another form

A = K

(
1
f
R

)
(3)

The matrix A transfers coordinates w.r.t. the world basis δ to coordinates w.r.t. the camera basis β
(i.e. Axδ = ~xβ). The decomposition (3) does this transformation in two steps. Firstly, the coordinates
w.r.t. δ are transformed to the coordinates to “in between” basis γ using the transformation matrix
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(1/f)R and, secondly, these coordinates are transformed to the coordinates w.r.t β using the matrix K.
The first transformation does rotation and scaling by f . Assume that the world basis is orthonormal.
The sizes of its vectors are equal to an unit by which we do measurement in our geometrical space
(millimeters, inches, etc.). The basis δ is mapped by inverse rotation and scaling to basis γ = (~c1,~c2,~c3).
Vectors ~ci are orthogonal (like vectors from δ) but their sizes are equal to f . See Figure 6.2 at the page
36 of the main GVG text. The projection plane is perpendicular to ~c3 and its distance from camera
center C is f .

Because K~xγ = ~xβ the matrix K includes in its columns the coordinates of vectors ~ci w.r.t the
basis β. Look at the Figure 6.2 in the main GVG text again and focus to the geometrical interpretation
of these coordinates. The matrix K realizes an orthogonalization process from non-orthogonal basis β to
orthogonal basis γ. We will next show it in detail.

Vectors ~b1, ~c1 are parallel and consistently oriented, so ~c1 = k~b1, where k = ‖~c1‖/‖~b1‖ = f/‖~b1‖.
(Note that the sizes of vectors are measured in the world units.) The first column of matrix K includes
coordinates ~c1 w.r.t β, so it must be [k, 0, 0]>.

It is possible to draw all representantives of free vectors ~b1,~b2,~c1,~c2 into projection plane (do it!)
because span(~b1,~b2) = span(~c1,~c2). It means that there exist scalars l, n such that ~c2 = l~b1 + n~b2.
Denote l0 the orthogonal projection of ~b2 to ~c1 and n0 the orthogonal projection of ~b2 to ~c2. It is clear
(from the figure) that

~c2 =
f

n0

(
~b2 − l0

~b1

‖~b1‖

)
. (4)

Let ϕ is the angle between ~b1 and ~b2. Then l0 = ‖~b2‖ cosϕ and n0 = ‖~b2‖ sinϕ. It follows from equation
(4) that

~c2 =
f

‖~b2‖ sinϕ

(
~b2 − ‖~b2‖ (cosϕ)

~b1

‖~b1‖

)
=

f

‖~b2‖ sinϕ
~b2 −

f cosϕ

‖~b1‖ sinϕ
~b1 = l~b1 + n~b2,

it means that l = − f cosϕ

‖~b1‖ sinϕ
, n =

f

‖~b2‖ sinϕ
.

Because the second column of the matrix K includes coordinates of ~c2 w.r.t the basis β, this column must
be [l, n, 0]>.

There exists one principal point P on the projection plane which is the perpendicular projection of
C onto the projection plane. Let the coordinates of this point w.r.t the coordinate system (o,~b1,~b2) be
m, p. It means that P = o + m~b1 + p~b2 Note that o is the origin with the condition o = C +~b3. Thus
P = C +~b3 +m~b1 + p~b2 which means that ~c3 = P −C = ~b3 +m~b1 + p~b2. Because the third column of
the matrix K includes the coordinates of vector ~c3 w.r.t the basis β, it must be [m, p, 1]>.

Let we summarize the results. The matrix K is in the form

K =

 k11 k12 k13
0 k22 k23
0 0 1

 =

 k l m
0 n p
0 0 1

 =


f

‖~b1‖
− f cosϕ
‖~b1‖ sinϕ

m

0 f

‖~b2‖ sinϕ
p

0 0 1


where

f ... is the focal length

‖~b1‖, ‖~b2‖ ... are sizes of basic vectors, first one is the pixel width

ϕ ... is the angle between ~b1, ~b2

m, p ... are coordinates of the principal point w.r.t the coordinate system (o,~b1,~b2)

It is very common that pixels are rectangles: ϕ = 90◦, l = 0 and n = f / ‖~b2‖.
Note that the elements of matrix K are dimensionless, because they include ratios of lengths. The

element k11 = k denotes the focal length expressed in the unit of the pixel width. The element k22 = n
denotes the focal length in the unit of pixel height (when pixel is a rectangle). The element m and p
determine the principal point position in units of pixel width and pixel height.
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If the elements of K are known then the angle ϕ between ~b1 and ~b2 can be calculated from the
equation l/k = −cotanϕ. And the ratio of basis vector lengths is ‖~b2‖/‖~b1‖ =

√
k2 + l2 /n.

Sometimes we can work with a little modification of equation (3) in the form:

A =

(
1
f
K

)
R = Kβ R

The interpretation of such decomposition is: first only rotation without scaling is done and then Kβ does
orthogonalization together with scaling. The matrix Kβ is named image calibration matrix and it has
the form

Kβ =


1
‖~b1‖

− cosϕ
‖~b1‖ sinϕ

m
f

0 1
‖~b2‖ sinϕ

p
f

0 0 1
f


Note that Kβ is equal to the matrix U which is direct output from the RQ decomposition process mentioned
at the end of the previous subsection.

4 Camera projection matrix vs. Image projection matrix
Let Pβ and t Pβ (where t > 0) be two image projection matrices. Then the projection result using both
matrices is the same. This fact should be reformulated more lapidary: the projection result is unchanged
when f and pixel sizes are scaled by the same scalar. We will show this fact more exactly.

Let X be a point with coordinates ~xδ w.r.t the world coordinate system δ. Let Pβ = [A |~c ] be an
image projection matrix. Then,

Pβ

[
~Xδ

1

]
= A~xδ + ~c = ~Xβ =

xy
z


are the coordinates of the point X w.r.t camera coordinate system β. Finally we do the projection:xy

z

 ∼
x/zy/z

1

 , i.e.
1
z

xy
z

 =

x/zy/z
1

 ,
so [x/z, y/z]> are coordinates of the projection of point X. Now, do the same calculation with the matrix
tPβ = [tA | t~c ]:

tPβ

[
~xδ
1

]
= tA~xδ + t~c =

 txty
tz

 and the projection is

 txty
tz

 ∼
x/zy/z

1


The coordinates of the projection point are the same. Note that [tx, ty, tz]> are coordinates of the point
X w.r.t a scaled camera coordinate system with new focal length f ′ = f/t and with new pixel sizes
‖~b′i‖ = ‖~bi‖/t. The depth of the point X is z or tz, respectively, and it is measured in multiples of f or
in multiples of f ′, respectively.

Remember that the focal length f can be calculated from image projection matrix Pβ = [A |~c ] by
(1/f) = ‖~a3‖ where ~a3 is the third row of matrix A. But there exist situations when we have no access
to physical dimensions of the camera and no knowledge about f . In such case the camera projection
matrix P = [A′ |~c ′] with the property ‖~a′3‖ = 1 is introduced. The decomposition A′ = K R should be
done directly without knowledge of f . The distance from camera center C to the projection plane is 1
unit (w.r.t world coordinate system) and the element k11 of the matrix K (for example) says how many
pixel widths are in one unit. The camera projection matrix is an image projection matrix with f = 1.

The results of a projection using camera projection matrix P is the same as when a real image
projection matrix Pβ is used iff P = f Pβ .
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