
David Šišlák

david.sislak@fel.cvut.cz

Effective Software

Lecture 12: Memory Management in JVM – Memory Layout, Garbage Collectors

[1] Jones, R., Hosking, A., Moss, E.: The Garbage Collection Handbook. CRC Press, USA 2012.

[2] JVM source code - http://openjdk.java.net

[3] Oaks, S.: Java Performance: The Definitive Guide. O'Reilly, USA 2014.

13th May 2019 ESW – Lecture 12 2

Automatic Memory Management

» advantages over explicit memory management

• no crashes due to errors – e.g. usage of de-allocated objects

• no memory leaks

» components

• parts in application code

– allocation

– read/write references

• garbage collector

– discover unreachable objects
(not transiently reachable
from roots – variables and
stack operands in frames,
static fields, special native
references from JNI)

– reclaim storage

13th May 2019 ESW – Lecture 12 3

Automatic Memory Management

» desired characteristics

• safety – never reclaim space of reachable objects, thread safe

• throughput – application code performance

– allocation performance – avoid fragmentation

– handles or direct references

– expensive reference counting or cross-region reference tracking

• read/write barriers – e.g. added compiled code

– later reads affected by re-ordering – breaking data locality, false sharing

• completeness and promptness

– eventually all garbage

– promptness of reclamation – how long garbage occupy memory

• pause time – stop the world (global safe point)

• space overhead

– additional cost per capacity/reference

– double heap for copying

• scalability and portability - multicore, large heaps

13th May 2019 ESW – Lecture 12 4

Generational Concept

» generational hypothesis

• weak – most objects die young

– there exist few references from older to younger objects

• strong – younger object dies earlier then older

» segregate objects by age into generations (JAVA use 2 generations) to
minimize pause time

• young

– small size

– frequent fast minor
collections (milliseconds)

• old (tenured)

– large size

– rare slow full collections
(seconds)

» promotion of objects during
minor collections

13th May 2019 ESW – Lecture 12 5

Identify Reachable Objects

» reference counting

• additional counter for every object – number of references to the object

• a lot of atomics operations to have it thread-safe

– slow down application code

• doesn’t support cyclic references

• pollute cache a lot with additional memory operations

• can remove objects when counter is 0 immediately with further
decreasing counts on reference objects

13th May 2019 ESW – Lecture 12 6

Identify Reachable Objects

» reference tracing approach

• no direct slow down of application code

• find references

– root in frames (stack, variables incl. parameters) using OopMaps

• compiled maps for every possible safepoint entry

– in different object using object type

• reference positions in klass VM structure

• marking phase traverse all objects from roots

– depth-first search, breath-first search

– dominates collection time due to random access to memory

• cache prefetching to reduce cost

• use mark flags to avoid cycles

– in object header – standard writes with possible partial re-traversal

– side bitmaps (1 bit for 64 bits) – improving cache operations, atomics

13th May 2019 ESW – Lecture 12 7

Identify Reachable Objects – Reference Tracking

13th May 2019 ESW – Lecture 12 8

Garbage Collector Design Architecture

» serial vs. parallel

» concurrent vs. stop the worlds

» compacting/sliding vs. non-compacting vs. copying

Serial Parallel CMS Garbage-First

13th May 2019 ESW – Lecture 12 9

Garbage Collector Design Architecture

-XX:+UseG1GC

G1

13th May 2019 ESW – Lecture 12 10

Parallel Collector

» JVM heap layout supporting adaptive resizing (virtual has no physical pages)

» max heap size (virtual space allocated) –Xmx

• default ¼ RAM up to 32 GB if there is >=128 GB RAM

» initial heap size (really allocated) –Xms

• default 1/64 RAM up to 1 GB if there is >=128 GB RAM

» young vs. old ratio –XX:NewRatio=<n>

• default 2 – thus old is 2x larger than young

» survivor spaces vs. eden ratio –XX:SurvivorRatio=<n>

• default 8 – thus eden is 8x larger than one survivor space

O
ld

a
llo

c
a

te
d

lo
w

 a
d

d
re

s
s

h
ig

h
 a

d
d

re
s
s

Old

13th May 2019 ESW – Lecture 12 11

Parallel Collector

» object allocations

• in TLAB inside eden - no space in TLAB left, new TLAB allocated

• in eden directly for objects larger than TLAB

• in old directly for objects larger than eden

» minor collection – parallel scavenge

• triggered when no space for new TLAB/object in eden

• collection in young generation only, promote to survivor or old

• results into clean eden, swap of survivor spaces (one empty)

» full collection – parallel mark compact

• triggered when there is no space for promotion or new object in old

• collection in young and old generations

• results into completely clean young (eden, both survivor spaces)

13th May 2019 ESW – Lecture 12 12

Remembered Set

» track old-to-young references

» speed-up frequent identification of reachable objects for minor collection

• marking starts from roots and references old-to-young

• do not traverse objects out of young generation

– fast bit operations using generation size 2n

red – old-to-young, blue – to old (don’t need trace during minor collection)

13th May 2019 ESW – Lecture 12 13

Card Table Compressed Remembered Set

» whole heap divided to 512 Bytes chunks (8 cache lines of 64 Bytes)

• each chunk has one card table slot

» thread-safe card table is Byte based

• avoid expensive atomic read-update-write for bit operations

• standard byte writes

– dirty (0) – possibly contain reference to young (has false positive)

– clean – cannot contain reference to young (no false negatives)

• 100 GB heap => 200 MB card table (<0.2%)

– one cache line holds cards for 32kB of heap

» write reference to object imply assembly code write barrier

• no tracking for null writes or reference writes in newly allocated

• track standard object start address

• track real element address for native reference arrays

• imprecise but very fast without any condition

– cards for young, all reference writes

CARD_TABLE[object address >> 9] = 0;

CARD_TABLE[array slot address >> 9] = 0;

13th May 2019 ESW – Lecture 12 14

Card Table Compressed Remembered Set – Write Barriers

write non-null reference in RAX to standard object at R11, standard oop, 64-bit:

write non-null reference in RAX to array at R10 index EBP, standard oop, 64-bit:

store reference in RAX to the first field in object

compute card offset from obj. start (R11) directly
card table start address to R9
store dirty to card table

Native Object array structure
standard OOP, 64-bit:

mark word

Klass ref.

0x00:

0x10:

0x20:

array length empty padding

object reference on index 0

object reference on index 1

.
.

.

count address of slot in array to R11

store reference in RAX to array slot
compute card offset from slot address (R11)
card table start address to R9
store dirty to card table

13th May 2019 ESW – Lecture 12 15

Card Table Compressed Remembered Set – Write Barriers

» no optimization for multi reference writes to the same object (which is fast
due to already cached part of card table)

• object can overlap over chunk boundary

» false sharing in contended multi-thread writes (even worse on multi-CPU)

• 64B cache line implies sharing of cards for 32kB (64*512)

• speed-up with conditional card table updates (–XX:+UseCondCardMark)

– for highly contended reference writes up to 7 times faster

if (CARD_TABLE [address >> 9] != 0) CARD_TABLE [address >> 9] = 0;

13th May 2019 ESW – Lecture 12 16

Minor Collector – Parallel Scavenge

» known also as throughput garbage collector

» currently default for Oracle JVM 8

» utilize more cores/CPUs (-XX:ParallelGCThreads=<N>)

• default #HW threads for <= 8

• 3+5/8 of #HW threads otherwise (e.g. 13 for 16 threads)

» stop-the-world manner

» copying with survivor spaces (“from” and “to”, swapped)

• relocate reachable objects in young generation to “to” survivor

– if no space, relocate them to old (or trigger full collection)

• eden and from survivor space is empty after minor collection

» parallel processing of task queue initially filled with

• add stripes of cards for scanning for old-to-young references (only allocated)

• add JNI handles and VM internals

• add frames from stacks

• add static references

13th May 2019 ESW – Lecture 12 17

Minor Collector – Scan Old for References to Young

» crossing map - Byte per 512 Bytes chunk like card table, for old only

• updated during allocation/promotion of object and full collection

• speed-up search for object start

N>0 object start offset in align positions of the last object in the card

N<0 object start offset start –N cards back or the there is the next –N

» clean cards before DFS queuing of processing of addresses of old-to-young refs

• already forwarded objects are updated immediately without queuing

• -XX:PrefetchScanIntervalInBytes=576 (9 cache lines)

25 qwords51 qwords

13th May 2019 ESW – Lecture 12 18

Minor Collector – Process Address of –to-Young Reference

» target is already marked/forwarded – mark word (forwarding address | 0b11)

• update reference to forwarding address

» target not marked yet

• current age < tenuring threshold

– copy object to “to” survivor using 32k PLAB (-XX:YoungPLABSize=4096)

• older or no space in young

– copy object to old using 8k PLAB (-XX:OldPLABSize=1024)

• mark previous object with forwarding address using CAS

– failed – de-allocate back, read other thread forwarding address

– success

• for forwarding in young update age of new object

• DFS queuing of processing of object’s addresses of old-to-young refs

• update reference to forwarding address

Note: all reference changes update card table if in “to” survivor

all PLAB or object re-allocations are NUMA aligned to speed-up collection

13th May 2019 ESW – Lecture 12 19

Full Collector – Parallel Mark Compact

» default for Oracle JVM 8

» stop-the-world manner

» multiple threads as parallel scavenge

» old generation logically divided into fixed-size regions

» use sliding compaction - clean eden and both survivors as well

• doesn’t need additional memory, but is slower than copying

» parallel mark phase

• initiated with all roots (not using card table)

• track all references not just those targeting to young

• info about reachable objects (location & size) are propagated to
corresponding region data

13th May 2019 ESW – Lecture 12 20

Full Collector – Parallel Mark Compact

» serial summary phase

• identify density of regions (due to previous compactions, older objects
should be on the left, younger to right side)

• find from which region (starting from the left side) it has sense to do
compaction regarding recovered from a region

– dense prefix – left regions which are not collected

• calculate new location of each live data for each regions; most right
regions will fill most left ones; pretend data locality keeping their order

13th May 2019 ESW – Lecture 12 21

Full Collector – Parallel Mark Compact

» parallel compaction/sweeping phase

• divide regions with some targets (start of objects)

• each thread first compact the region itself and fill it by designated right
regions

– all references are updated based on summarized data (read only)

– crossing map is updated to track the last object start in chunk

• no synchronization needed, only one thread operate per each region

• update root references and clean empty in parallel

• finally heap is packed and large empty block is at the right end

13th May 2019 ESW – Lecture 12 22

Full Collector – Parallel Mark Compact

» support strong generational hypothesis – younger object dies earlier then
older

• the objects with highest probability to survive are located on the left
side (because of previous GC runs)

• dense prefix completely avoid their costly copying

• 50% of full collection work reclaim 82% of garbage

• reclaim of additional 18% of garbage cost as much as previous work

» dense prefix is adaptively updated

• considering used to total heap ratio

• affects pause time of full collection

» after full collection

• whole young is empty

• card table is cleaned (there are
no references to young)

13th May 2019 ESW – Lecture 12 23

Parallel Collector - Ergonomics

» adaptive mechanism resizing generations (-XX:+UseAdaptiveSizePolicy)

• max pause time goal (-XX:MaxGCPauseMillis=<undef>)

– if not met - shrink generation size where the pause time is longest and
at least above the goal

• throughput goal (-XX:GCTimeRatio=99) – applied when previous is met

– if not met – increase both generations

• young increased according to its time portion in total time

• minimum footprint goal – applied if all previous are met

– shrink heap size

-XX:YoungGenerationSizeIncrement=20 ; -XX:TenuredGenerationSizeIncrement=20

-XX:AdaptiveSizeDecrementScaleFactor=4 (default 5%)

-XX:YoungGenerationSizeSupplement=80 (similar for tenured)

-XX:YoungGenerationSizeSupplementDecay=8 (8 times added)

-XX:TenuredGenerationSizeSupplementDecay=2 (2 times added)

13th May 2019 ESW – Lecture 12 24

Garbage First (G1) Collector

» dynamic generational collector called G1GC (-XX:+UseG1GC)

» concurrent collector for large heaps (replacement for older CMS)

» whole heap divided into regions (by def. to be close 2048 regions 1-32MB)

» no explicit separation between generations, only regions are mapped to
generational spaces (generation is set of regions, changing in time)

» set of regions defines

» young generation

» old generation

» compacting -> enables bump-the-pointer, TLABs, uses CAS

» copying = copy live from a region to an empty region

» keep Humongous regions (sequence) for objects >=50% regions size

» maintain list of free regions for constant time

13th May 2019 ESW – Lecture 12 25

Garbage First (G1) Collector

» activities in garbage first collector – minor, mixed, full collections

• parallel with global safe point (stop the world)

– initial marking pause

– final marking pause with data counting

• prepare candidate regions for mixed

– copying

• concurrent with multiple threads

– remember set refinement

– marking

– clean-up ?

» major speed-up is that fast copying collection applied incrementally to old

• requires more heap than parallel due to concurrent activities

» poor handling of larger objects (humongous objects)

» not NUMA aware

» default since JVM 9

13th May 2019 ESW – Lecture 12 26

Garbage First (G1) Collector – Remember Set

» track references into a region

• ignore null and inter-region references

• old-to-young and old-to-old

» additional structures with ~5% heap overhead

» use per-region-table (PRT) with card table
updated asynchronously using
update thread log buffers

• processed by refinement threads
-XX:G1ConcRefinementThreads=<n> (max threads)

• filled by compiled write barrier (pseudo code shown for simplification)

-XX:+G1SummarizeRSetStats -XX:G1SummarizeRSetStatsPeriod=1

log2 of region size (1MB)

13th May 2019 ESW – Lecture 12 28

Garbage First (G1) Collector – Minor and Mixed Collection

» stop-the-world approach with parallel threads

» triggered when no more allocation in Young regions possible

» collection set (CSet)

• eden and from survivor regions for pure minor collection

• eden, from survivor and candidate old regions for mixed collection

» reachable objects identified from roots + Rset for the regions + card table

» reachable objects are copied (from eden and survivor regions) into one or
more new survivor regions

• using forwarding address with marking similar to parallel scavenge

» if aging threshold is met => promoted into old regions (optionally new)

13th May 2019 ESW – Lecture 12 29

Garbage First (G1) Collector – Marking Phase

» triggered by heap occupancy percent (-XX:InitiatingHeapOccupancyPercent=45)

» outcomes

• candidate old regions with a lot of garbage for mixed collection

• cleanup completely empty old regions

» initial mark – done right after minor collection utilizing global safe point (GSP)

• snapshot-at-the-beginning (SATB) – scan roots

» marking and region-based statistics collection – concurrent

(-XX:ConcGCThreads=<n>)

• can be interrupted by minor GC

• pre-write barrier keeps previous reference in SATB

» final mark - right after the next minor collection in GSP

• reflect changes in previous minor collections and
allocations utilizing modifications in card tables

• summarize and prepare ordered candidates

13th May 2019 ESW – Lecture 12 30

Garbage First (G1) Collector – Full Collection

» multiphase full tracking with compact of all regions during global safe point

» triggered by

• concurrent mode failure – old fill-up before concurrent complete

– increase heap, decrease trigger threshold, more concurrent threads

• promotion failure – mixed collection but run-of space in old

– trigger sooner

• evacuation failure – minor collection has no more space for promotion

– increase heap

• humongous allocation failure – no space for large objects

– avoid large objects (>50% of region size)

– increase region size (alternatively increase heap)

13th May 2019 ESW – Lecture 12 31

Garbage First (G1) Collector – Humongous Objects

» objects larger than ½ of the region are considered as humongous

• with 1MB region it is just 500kB -> there can be a lot of such objects

» allocation

• check concurrent trigger and optionally start concurrent marking

• one set of humongous regions contain just one such object

– waste up to region size – 1 + allocated out of Young generation

• not having sequence of free regions for allocation of a object trigger
expensive full collection

» reclamation of non-reachable during (compacted during full collection only)

• cleanup phase of concurrent cycle

• full collection

» debug humongous allocations

• -XX:+UnlockExperimentalVMOptions –XX:G1LogLevel=finest
–XX:+PrintAdaptiveSizePolicy

• use Java Flight Recorder in Java Mission Control

– all allocations tracked in runtime routines like TLAB allocations

13th May 2019 ESW – Lecture 12 32

Garbage First (G1) Collection – Tuning Options 

13th May 2019 ESW – Lecture 12 33

Conclusion

