
David Šišlák

david.sislak@fel.cvut.cz

Effective Software

Lecture 7: Non-blocking I/O, C10K, efficient networking

[1] Tanenbaum, A. S., Wetherall, D. J.: Computer Networks. Pearson, 2011.

[2] Kegel, D.: The C10K problem. http://www.kegel.com/c10k.html

[3] Hitchens, R.: Java NIO. O’Reilly, 2002.

1st April 2019 ESW – Lecture 7 2

Network Communication – OSI Model

1st April 2019 ESW – Lecture 7 3

Network Communication – Introduction

» ports – 16-bit number

» IPv4 – 32-bit address

» IPv6 – 128-bit address

• 48-bit or more routing prefix, 16-bit or less subnet id, 64-bit interface

http://[1fff:0:a88:85a3::ac1f]:8080/index.html

» TCP/UDP connection identification – quad – src IP, src port, dst IP, dst port

1st April 2019 ESW – Lecture 7 4

Network Communication – HTTP Example

1st April 2019 ESW – Lecture 7 5

C10k Problem

» handling a large number of clients (10 000s) at the same time (late 90s)

• concurrent connections at one server requiring efficient scheduling

• not related to requests per second

» sometime known as C1M or C10M problem (nowadays)

» approach

• don’t use threading servers like Apache

– each connection handled by own thread/process (pooled but limited)

– connection operations usually use blocking operations

– thread scheduling doesn’t scale (+cost for thread context switching)

– thread scheduling used as packet scheduling

• use event-driven I/O servers like Nginx

– do packet scheduling yourself – single/multi-threaded event loop

– using non-blocking (asynchronous) operations with event interceptors

– multi-core scalability with controlled number of worker threads

– reuse thread-based data structures, avoid locks (atomics, non-blocking)

1st April 2019 ESW – Lecture 7 6

Threads

» processes vs. threads

• both support concurrent execution

• one process has one or multiple threads

• threads share the same address space (data and code)

• context switching between threads is usually less expensive

• thread inter-communication is relatively efficient using shared
memory

» JVM

• a thread executes sequence of code with own stack with frames

t.getStackTrace()

• own local variables

• own method parameters

» thread creation by

• subclass of java.lang.Thread

• implementation of java.lang.Runnable

1st April 2019 ESW – Lecture 7 7

JAVA Thread Pool - ExecutorService

» concept of thread pooling

» suitable for execution of large number of asynchronous tasks

• e.g. processing of requests in server

» reduce overhead with Thread creation for each task, context switching

» interface - java.util.concurrent.ExecutorService

• shutdown(), shutdownNow(), awaitTermination

• execute(Runnable r)

• Future<?> submit(Runnable r), Future<T> submit(Callable<T> c)

» java.util.concurrent.Future<T>

• boolean cancel(boolean mayInterruptIfRunning)

• isCancelled(), isDone()

• V get(), V get(long timeout, TimeUnit unit)

» java.util.concurrent.Executors (optionally with ThreadFactory)

• newSingleThreadExecutor()

• newFixedThreadPool(nThreads)

• newCachedThreadPool() – default 60 seconds keep-alive

1st April 2019 ESW – Lecture 7 8

Non-Blocking I/O Approach

» polling

• looping to regularly check status (readiness for I/O)

• wastes CPU cycles

» signals

• OS generated signals on I/O readiness

• might leave state inconsistent in the process inconsistent

» callbacks

• pointer to handler function

• stack deepening issue (callback issuing I/O)

» interrupts

• hardware interrupts in kernel mode

» event-based

• select

• poll

• epoll

1st April 2019 ESW – Lecture 7 9

Event-Based I/O - select

» select

• defined in POSIX (Portable Operating System Interface)

• originally used for blocking I/O

• passed lists of descriptors cannot be reused in subsequent calls as
they are modified by the system call

• not scalable – limited descriptors + iterate over to find the event

1st April 2019 ESW – Lecture 7 10

Event-Based I/O - poll

» poll

• polled descriptors not limited

• descriptors can be reused

• better but you still need iterate over descriptors to find events

1st April 2019 ESW – Lecture 7 11

» API

• epoll_create & epoll_create1 – initialize epoll instance (kerne structure)

• epoll_ctl – add/modify/remove descriptors to epoll instance

• epoll_wait – wait for events up to timeout

» modes

• level triggered – wait always returns if event is available

• event triggered (EPOLLET) – readiness returned upon incoming event only

(you have to process all pending events before next wait !)

» events

• EPOLLIN, EPOLLOUT, EPOLLPRI

• EPOLLRDHUP, EPOLLHUP

• EPOLLERR

Event-Based I/O - epoll

» epoll

• Linux only (e.g. Windows has IOCP – IO Completion Ports)

• scalable

• monitored events can be modified while polling (via syscall)

• returns triggered events directly

1st April 2019 ESW – Lecture 7 12

Epoll Usage

epoll structure:

initialization:

1st April 2019 ESW – Lecture 7 13

Epoll Event Loop

1st April 2019 ESW – Lecture 7 16

JAVA Networking – TCP Client

» Socket

• client end-point of network TCP/IP connection

• is bound to particular destination IP and port

• each TCP/IP connection is uniquely identified by its two end-points

• provides input/output streams

1st April 2019 ESW – Lecture 7 17

JAVA Networking – TCP Server

» ServerSocket

• special socket representing listening TCP/IP end-point

• within constructor you specify the port, and optionally IP where it has
to be bound

• wait for establishing connection using method Socket accept()

1st April 2019 ESW – Lecture 7 18

JAVA Networking – TCP Server - Example

threading server example – each handler runs in own thread with blocking I/O

1st April 2019 ESW – Lecture 7 19

JAVA Networking - UDP

» DatagramPacket

• independent, self-contained message sent over the network

• like packet

– InetAddress address, int port – destination

– byte data[], int length, int offset

– SocketAddress sa – sender

» DatagramSocket

• sending or receiving point for a packet delivery service

• can be bound to any available port (using default constructor)

• connect(InetAddress,int) – can sent or receive packets only specified
host, if not set in DatagramPacket automatically fill

• send(DatagramPacket p), receive(DatagramPacket p) – blocking IO

» MulticastSocket

• additional capabilities for joining/leaving multicast groups, loopback

• multicast IP (IGMP – Internet Group Management Protocol)

224.0.0.0 – 239.255.255.255

1st April 2019 ESW – Lecture 7 20

JAVA Networking - NIO

» scalable I/O – asynchronous I/O requests and polling

» high-speed block-oriented binary and character I/O working – including
mapping files to the memory, using channels and selectors

» Channel is like a block device working with Buffers

1st April 2019 ESW – Lecture 7 21

JAVA – NIO - Buffer

» java.nio.Buffer

• linear, finite sequence of elements of a specific primitive type

– ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer, MappedByteBuffer {FileChannel.map(…)}

• not thread safe, multi mode for the same buffer (both read & write)

• key properties – 0 <= mark <= position <= limit <= capacity

– capacity – numbers of elements, never changing !

– limit – index of the first element that should not be read or written

– position – index of the next element to be read or written

– mark – index to which its position is set after reset()

• clear() – position=0, limit=capacity => ready for channel read (put)

• flip() – limit=position, position=0 => ready for channel write (get)

• rewind() – limit unchanged, position=0 => ready for re-reading

• mark() – mark = position

• reset() – position=mark

1st April 2019 ESW – Lecture 7 22

JAVA – NIO - Buffer

» write mode – channel.read(buf); buf.put(…);

» read mode – channel.write(buf); … buf.get();

1st April 2019 ESW – Lecture 7 23

JAVA – NIO - Buffer

» java.nio.Buffer

• isReadOnly() – can be read-only

• hasArray() – is backed by an accessible array (array())

• equals(), compareTo() – compare remainder sequence

• can be allocated to native memory (see next slide)

• typical usage

Note: compact() – bytes between position and limit are copied to the
beginning of the buffer and prepare for writing again

1st April 2019 ESW – Lecture 7 24

JVM – Memory Layout – Native Memory

native memory

JNI

native
NIO
buffers

1st April 2019 ESW – Lecture 7 25

JVM – NIO - Direct Buffers

» ByteBuffer.allocateDirect(…)

» stored out of JAVA heap in native memory

» allow native code and Java code to share data without copying

• useful for file and socket

– the same memory is passed to kernel during calls

» multiple buffers can share native memory

• slice()/duplicate() – independent position, limit, mark, shared content

• asReadOnlyBuffer() – read only view of shared content

» tuning/tracking

• -XX:MaxDirectMemorySize=N (default unlimited)

• -XX:NativeMemoryTracking=off|summary|detail

• -XX:+PrintNMTStatistics

Note: usage of heap buffers implies content copy out/in Java heap space due
to possible relocations by GC

1st April 2019 ESW – Lecture 7 26

JAVA Networking - NIO – Channel, Selector

» one thread works with multiple channels at the same time

• epoll-based if OS support epoll

» Channel – cover UDP+TCP network IO, file IO

• FileChannel – from Input/OutputStream or RandomAccessFile

• DatagramChannel

• MulticastChannel

• SocketChannel

• ServerSocketChannel

1st April 2019 ESW – Lecture 7 27

JAVA – NIO – Channel

» Channel

• read/write at the same time (streams are only one-way)

• always read/write from/to a buffer

» FileChannel

• only blocking

• support – direct buffers, mapped files, locking

• bulk transfers between channels

– no copy at all, direct transfer e.g. to socket

– transferFrom(sourceChannel, int pos, int count)

– transferTo(int pos, int count, dstChannel)

1st April 2019 ESW – Lecture 7 28

JAVA – NIO – Channel

» SocketChannel – client end-point of TCP/IP

• can be configured as non-blocking before connecting

• SocketChannel socket.getChannel();

• SocketChannel SocketChannel.open();

• sch.connect(…)

• write(…) and read(…) may return without having written/read
anything for non-blocking channel

» ServerSocketChannel – server end-point of TCP/IP

• can be configured as non-blocking

• can be created directly using open() or from ServerSocket

• accept() – returns SocketChannel in the same mode

1st April 2019 ESW – Lecture 7 29

JAVA – NIO – Selector

» Selector

• Selector Selector.open();

• only channels in non-blocking mode can be registered

channel.configureBlocking(false);

SelectionKey channel.register(selector, SelectionKey.OP_READ);

• FileChannel doesn’t support non-blocking mode

» SelectionKey – events you can listen for (can be combined together)

• OP_CONNECT

• OP_ACCEPT

• OP_READ

• OP_WRITE

» events are filled by channel which is ready with operation

1st April 2019 ESW – Lecture 7 30

JAVA – NIO – Selector

» SelectionKey – returned from register method

• interest set – your configured ops

• ready set – which ops are ready, sk.isReadable(), sk.isWritable(), …

• channel

• selector

• optional attached object – sk.attach(Object obj);
Object sk.attachment()

SelectionKey channel.register(selector, ops, attachmentObj);

1st April 2019 ESW – Lecture 7 31

JAVA – NIO – Selector

» Selector with registered one or more channels

• int select() – blocks until at least one channel is ready

• int select(long timeout) – with timeout milliseconds

• int selectNow() – doesn’t block at all, returns immediately

return the number of channels which are ready from the last call

Set<SelectionKey> selector.selectedKeys();

• wakeUp() – different thread can “wake up” thread blocked in select()

• close() – invalidates selector, channels are not closed

1st April 2019 ESW – Lecture 7 32

JAVA – NIO Server – Using Multiple Reactors

ReactorsReactorsNIOReactorsNIOReactors

ClientClient

ClientClient

ClientClient

NIOAcceptor
Handler

NIOAcceptor
Handler

NIOClientHandlersNIOClientHandlersNIOClientHandlersNIOClientHandlers

parseparsereceivereceive sendsend

ThreadPoolThreadPool

Queued parse
tasks

Queued parse
tasks

Worker threadWorker thread

Worker thread

1st April 2019 ESW – Lecture 7 33

JAVA – NIOServer Example

1st April 2019 ESW – Lecture 7 34

JAVA – NIOReactor Example

1st April 2019 ESW – Lecture 7 35

JAVA – NIOHandler Example

1st April 2019 ESW – Lecture 7 36

JAVA – NIOAcceptorHandler Example

1st April 2019 ESW – Lecture 7 37

JAVA – NIOClientHandler Example

1st April 2019 ESW – Lecture 7 38

JAVA – NIOClientHandler Example

1st April 2019 ESW – Lecture 7 39

JAVA - NIOClientHandler Example

1st April 2019 ESW – Lecture 7 40

JAVA - NIOClientHandler Example

