
B4M36ESW: Efficient software
Lecture 3: Benchmarking

Michal Sojka
michal.sojka@cvut.cz

March 4, 2019

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

2 / 49

Benchmarking

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

3 / 49

Benchmarking

Benchmark

Wikipedia defines benchmark as:
1 the act of running a computer program, a set of programs, or other

operations, in order to assess the relative performance of an
object, normally by running a number of standard tests and trials
against it.

2 a benchmarking program itself (i.e. “XY is a free benchmark that
tests your computer’s performance.”)

Object examples:
Hardware
Compiler
Algorithm
…

Types of benchmarks:
Micro-benchmarks (synthetic)
Application benchmarks

4 / 49

https://en.wikipedia.org/wiki/Benchmark_(computing)

Benchmarking

Types of benchmark

1 Micro-benchmark
Evaluates very little part of an application
It is easy to determine source of speed-up/slow down
Typically, improvements in micro-benchmark do not imply
improvements application performance

2 Application benchmarks
Evaluate performance of the whole applications
Performance is influenced by many read-world factors
For complex applications, it might difficult to determine the source of
speed-up/slow-down

5 / 49

Benchmarking

How to measure software performance?

What to measure?
Execution time
Memory consumption
Energy

How to measure?
Not as easy as it sounds
See the rest of the lecture

6 / 49

Benchmarking » Energy

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

7 / 49

Benchmarking » Energy

Measuring energy

Connect power meter to your computer/board
Use hardware-provided interfaces for power/energy
measurement/control

These are more and more common these days

Example
Intel RAPL (Running Average Power Limit)

Allows to monitor and/or limit power consumption of individual
components
Package domain, memory domain (DRAM)
Interface via MSRs
See Intel Software Developer’s Manual: System Programming
Guide

8 / 49

Benchmarking » Memory consumption

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

9 / 49

Benchmarking » Memory consumption

Measuring memory consumption

Under modern OSes, measuring memory usage is surprisingly
complex
How programs consume memory?

1 Program memory
Code, static data, heap, stack
Stack is allocated for each thread

2 Operating system kernel memory
Allocated by the OS kernel on behalf of the program
network buffers, disk and file system caches, system objects (timers,
semaphores, …)
Sometimes, it is not possible to account this memory to an individual
process – e.g. network receive buffers.

3 Shared libraries
How to account memory consumed by libraries shared by multiple
programs?

10 / 49

Benchmarking » Memory consumption

Basics of Linux Memory Statistics

Tools like top or htop report several memory statistics
VIRT Total amount of virtual memory reserved by the

process. Not all this memory needs to be backed by
physical memory. It does not include kernel memory.

Example: Allocate 1 GiB of virtual memory without
allocating physical memory immediately.
mmap(NULL, 1ULL << 34, PROT_READ | PROT_WRITE,

MAP_ANONYMOUS | MAP_SHARED, -1, 0);

RES Currently resident (physical) memory
SHR Memory shared with other processes (data, .so)

11 / 49

Measuring execution time

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

12 / 49

Measuring execution time » Timestamping

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

13 / 49

Measuring execution time » Timestamping

Measuring execution time
Timestamping

1 Use system calls
Linux: gettimeofday, clock_gettime(CLOCK_MONOTONIC)
Resolution: depends on available hardware (down to 1 ns), earlier it
was a system tick period (1–10ms)
Overhead – hundreds of CPU cycles (but see next slide)

2 Use hardware directly (e.g. timestamp counter)
TSC register on x86 (resolution 1 clock cycle, overhead few (≈ 8)
clock cycles
Similar registers on other architectures
Cons: Can be subject to CPU frequency scaling, TSC counters on
different CPU cores/sockets may not be synchronized
static inline uint64_t rdtsc() {

uint64_t ret;
asm volatile ("rdtsc" : "=A" (ret));
return ret;

}

3 Combine both: Virtual syscall
14 / 49

Measuring execution time » Timestamping

Virtual syscall for fast timestamping

Reading TSC is fast, but HW/frequency/socket dependent
Problematic when two timestamps need to be subtracted
OS kernel knows everything about HW/frequency/socket but calling
kernel has overhead

Idea: OS kernel publishes enough information for user space to
reliably convert TSC value to wall-clock time without calling the
kernel

time_ns = rdtsc() * tsc_scale + tsc_offset
Virtual Dynamic Shared Object – VDSO

Kernel memory mapped to process address space
Looks like shared library
Application can call ordinary functions from there
cat /proc/$$/maps|grep vdso
gettimeofday, clock_gettime are functions implemented in VDSO

15 / 49

Measuring execution time » Benchmark design

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

16 / 49

Measuring execution time » Benchmark design

Measuring execution time

Execution time exhibits variations
Influenced by many factors:

Hardware, input data, compiler, memory layout, measuring overhead,
rest of the system, network load, … you name it
Same factors can be controlled, others cannot

Repeatability of measurements
How to design benchmark experiments properly?
How to measure speedup?

17 / 49

Measuring execution time » Benchmark design

Example

18 / 49

Measuring execution time » Benchmark design

The Challenge of Reasonable Repetition
Variations
Measurements must be repeated
We want to eliminate the influence of random (non-deterministic) factors
Statistics
Controlled variables (e.g. compiler flags, hardware, algorithm changes) –

we are interested how they impact the results
Random variables (e.g. hardware interrupts, OS scheduler) – we are

interested in statistical properties of our results in face of these
variables

Uncontrolled variables – mostly fixed, but can cause bias of the results

Experiment
(Benchmark)

Controlled
variables

Random
variables

Uncontrolled
variables

Results

19 / 49

Measuring execution time » Benchmark design

Benchmark goal

Estimate (a confidence interval for) the mean of execution time of a
given benchmark on one or more platforms.
The mean is the property of the probability distribution of the
random execution times
We can only estimate the mean value from the measurements
Confidence interval is important

CI of 95%⇒ in 95% of cases, the true mean will be within the interval.

20 / 49

Measuring execution time » Benchmark design

Levels of repetition

Results variance occurs typically at multiple levels, e.g.:
(re)compilation
execution
iteration inside a program

Sound benchmarking methodology should evaluate all the levels
with random variations

Next slides give answer to:
How many times to repeat the experiment at each level?

As little times as possible to not waste time
As many times as possible to get reasonable confidence in results

How to summarize the results?

21 / 49

Measuring execution time » Summarizing benchmark results

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

22 / 49

Measuring execution time » Summarizing benchmark results

Significance testing

Is it likely that two systems have different performance?
Statistics can answer this with Significance testing
However, this technique has problems, especially when used with
results of computer benchmarks – see Kalibera’s paper.

It is better to ask what is the speedup.
Significance testing is implemented in the ministat tool (FreeBSD)

From ministat man page
The ministat command was written by Poul-Henning Kamp out of
frustration over all the bogus benchmark claims made by people with no
understanding of the importance of uncertainty and statistics.

23 / 49

Measuring execution time » Summarizing benchmark results

ministat examples
+---+
| +++ + + x x x |
| +++++ +++ x x x x |
| +++++ +++ x xx xxx x x |
| +++++ +++ x xxxxxxx x x x |
| +++++ +++++ xxxxxxxxx x xx x + x|
| |________MA_________| |
||______M_A_______| |
+---+

N Min Max Median Avg Stddev
x 40 88.92 122.527 92.594 93.34845 5.3399441
+ 40 82.313 112.625 84.52 85.447325 4.6810848
Difference at 95.0% confidence

-7.90112 +/- 2.2355
-8.46412% +/- 2.39479%
(Student's t, pooled s = 5.02133)

Difference at 99.5% confidence
-7.90112 +/- 3.59073
-8.46412% +/- 3.84658%

Too little data with too similar distribution:

+---+
| + + |
|+ x + + + x + + * x x x x xxx +|
| |______________________A______M_______________| |
| |____________________A___M________________| |
+---+

N Min Max Median Avg Stddev
x 10 151.527 155.963 154.936 154.5278 1.4673007
+ 10 151.371 156.096 153.618 153.3248 1.3398755
No difference proven at 95.0% confidence

24 / 49

Measuring execution time » Summarizing benchmark results

Confidence interval

We want to estimate the mean of a probability distribution
We only have a limited set of r measurements and know almost
nothing about the distribution
We calculate the average value Ȳ from the measurements
How is the average different from the true mean value?
Ȳ ± SY√

r qt(r−1)(1− α
2), where

qt(r−1)(1− α
2) is (1−

α
2)-quantile of the Student’s t -distribution with

r − 1 degrees of freedom.
α is significance level (e.g. 5%)

We say: Execution time of our benchmark is 25.4± 3.2 ms with 95%
confidence.
This means that the true mean is somewhere between 22.2 and
28.6 with probability of 95%.
https://stackoverflow.com/questions/15033511/compute-a-confidence-interval-from-sample-data

25 / 49

https://stackoverflow.com/questions/15033511/compute-a-confidence-interval-from-sample-data

Measuring execution time » Summarizing benchmark results

Visual tests

Calculate and visualize confidence intervals.
Do the two confidence intervals overlap?
No⇒ different performance is likely
Yes⇒ more statistics needed
Hard to estimate speedup and its confidence interval
Note: ministat does not calculate confidence intervals, but
standard deviations, i.e. SY

26 / 49

Measuring execution time » Summarizing benchmark results

Recommendation

Analysis of results should be statistically
rigorous and in particular should quantify any
variation. Report performance changes with

effect size confidence intervals.

27 / 49

Measuring execution time » Repeating iterations

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

28 / 49

Measuring execution time » Repeating iterations

Repeating iterations

Iteration = one execution of a loop body
We are interested in steady state performance
Initialization phase

First few iterations typically include the initialization overheads
Warming up caches, teaching branch predictor, memory allocations

Independent state
Ideally, measurements should be independent, identically distributed
(i.i.d.)
Independent: measurement does not depend on any a previous
measurement
Independent⇒ initialized

29 / 49

Measuring execution time » Repeating iterations

When a benchmark reaches independent state?

Manual inspection of graphs from measured data
1 run-sequence plot⇒ easy identification of initialization phase⇒ strip

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500

'seq'

2 Independence assessment – plot the following plots on original and
randomly reordered sequence

lag plot (for several lags – e.g. 1–4)
auto-correlation function

3 Any visible pattern suggests the measurements are not independent

30 / 49

Measuring execution time » Repeating iterations

Lag plot

Dependency of a measured values on the previously measured value.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

LAG 1 of Time [s]

Ti
m

e
[s

]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●●

●

●

●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

LAG 1 of Time [s]

Ti
m

e
[s

]

31 / 49

Measuring execution time » Repeating iterations

Auto-correlation function

0 5 10 15 20

−0
.5

0.
0

0.
5

1.
0

LAG

C
or

re
la

tio
n

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LAG
C

or
re

la
tio

n

dependent independent

32 / 49

Measuring execution time » Repeating iterations

Recommendations

Use this manual procedure just once to find how many iterations each
benchmark, VM and platform combination requires to reach an
independent state.

If a benchmark does not reach an independent state in a reasonable
time, take the same iteration from each run.

33 / 49

Measuring execution time » Repeating executions and compilation

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

34 / 49

Measuring execution time » Repeating executions and compilation

Repeating executions

Running a benchmark program multiple times
Effect of JIT compiler etc.

Example: Variance in % of different benchmarks from
DaCapo/OpenJDK benchmark suite

What if different executions exhibit higher variance than iterations?
(see lusearch9)
Determine initialized and independent state for executions as for
iterations.

35 / 49

Measuring execution time » Repeating executions and compilation

Repeating compilation
Sometimes even a compiler can influences the benchmark results.
Experiment: Code layout generated by the compiler: original vs.
randomized

Why code layout makes a difference?
If you cannot control the factor, make it random!

36 / 49

Measuring execution time » Multi-level repetition

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

37 / 49

Measuring execution time » Multi-level repetition

Multi-level repetition

We have to repeat the experiments to narrow confidence interval
If the variance occurs at higher levels (execution, compilation), we
need to repeat at least at that level.
Repeating at lower level may be cheaper (no execution overhead,
compilation overhead, etc.)

Time can be saved by repeating at lower levels.
How to find required number of repetitions at each level to reach
given confidence interval?

Can be formulated mathematically.
If you repeat too little, you have wide confidence intervals.
If you repeat too much, you waste your time with running
unnecessary experiments.

38 / 49

Measuring execution time » Multi-level repetition

Notation

Levels
Lowest level (iteration) = 1
Highest level (e.g. compilation) = n

Initial experiment
bold letters
r1, c1

Real experiment
normal letters
r1, c1

39 / 49

Measuring execution time » Multi-level repetition

Initial experiment

Goal is to find the required number of iterations at each level.
Select number of repetitions (exclusive of warm-up) r1, r2,… to be
arbitrary but sufficient value, say 20.
Gather the cost of repetition at each level (time added exclusively by
that level, e.g. compile time)

c1 iteration duration
c2 time execute benchmark up to independent state
c3 compilation time

Measurement times: Yjn...j1 , j1 = 1 . . . r1, j2 = 1 . . . r2, . . .
Calculate arithmetic means for different levels:
Ȳjn•···•

40 / 49

Measuring execution time » Multi-level repetition

Variance estimators
After initial experiments, we will calculate n unbiased variance estimators
T2

1, . . . ,T2
n

They describe how much each level contributes independently to variability
in the results
Start with calculating S2

i – biased estimator of the variance at each level
i , 1 ≤ i ≤ n:

S2
i =

1∏n
k=i+1 rk

1

ri − 1

rn∑
jn=1

· · ·
ri∑
ji=1

(
Ȳjn ...ji•···• − Ȳjn ...ji+1•···•

)2
Then obtain T 2

i :

T 2
1 = S2

1

∀i , 1 < i ≤ n,T 2
i = S2

i −
S2
i−1

ri−1

If T 2
i ≤ 0, this level induces little variation and repetitions can be skipped.

41 / 49

Measuring execution time » Multi-level repetition

Real Experiment: Confidence Interval

Optimum number of repetitions at different levels r1, . . . , rn−1 can be
calculated as:

∀i , 1 ≤ i < n, ri =
⌈√

ci+1

ci
T 2
i

T 2
i+1

⌉
Then recalculate: S2

n and Ȳjn•···• as before but with data from real
experiment.
Asymptotic confidence interval with confidence (1− α) is:

Ȳ ± t1−α
2
,ν

√
S2
n
rn

where t1−α
2
,ν is (1− α

2)-quantile of the t -distribution with ν = rn − 1
degrees of freedom.

42 / 49

Measuring execution time » Multi-level repetition

Recommendation

For each benchmark/VM/platform, conduct a
dimensioning experiment to establish the

optimal repetition counts for each but the top
level of the real experiment. Re-dimension
only if the benchmark/VM/platform changes.

43 / 49

Measuring speedup

Outline

1 Benchmarking
Energy
Memory consumption

2 Measuring execution time
Timestamping
Benchmark design
Summarizing benchmark results
Repeating iterations
Repeating executions and compilation
Multi-level repetition

3 Measuring speedup

44 / 49

Measuring speedup

Measuring speedup

Speedup: “With my optimization, the program runs 10% faster.”
Speedup is a ratio of two execution times (random variables)
What is the speedup confidence interval?
E.g. 10%±2% faster with confidence of 99%
How many times to repeat the speedup experiments?

45 / 49

Measuring speedup

Speedup confidence interval

Ȳ – old system execution time (average of measured times)
Ȳ ′ – new system execution time
Speedup: Ȳ ′/Ȳ
Speedup confidence interval:

Ȳ · Ȳ ′ ±
√

(Ȳ · Ȳ ′)2 − (Ȳ 2 − h2)(Ȳ ′2 − h′2)
Ȳ 2 − h2

h =

√
t2α
2
,ν

S2
n
rn

h′ =

√
t2α
2
,ν

S ′2
n
rn

46 / 49

Measuring speedup

Repetition count

Relation of confidence interval of the speedup to confidence interval
on individual measurements:

es ≈ Ȳ ′

Ȳ
√
e2 + e′2

es, e, e′ relative half-width of the speedup resp. old resp. new
confidence interval, i.e. e = h/Ȳ

Old system: 10±1 s, e=0.1 (10%)
New system: 9±0.9 s, e’=0.1
Speedup: ≈0.9±0.13
Outcome: Speedup can be 1, i.e. no speedup!

47 / 49

Measuring speedup

Recommendation

Always provide effect size confidence
intervals for results. Either for single systems

or for speedups.

48 / 49

Measuring speedup

References
Kalibera, T. and Jones, R. E. (2013) Rigorous Benchmarking in Reasonable
Time. In: ACM SIGPLAN International Symposium on Memory Management
(ISMM 2013), 20–12 June, 2013, Seattle, Washington, USA.
http://kar.kent.ac.uk/33611/
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
Erik van der Kouwe et al. (2018) Benchmarking Crimes: An Emerging
Threat in Systems Security, https://arxiv.org/abs/1801.02381

49 / 49

http://kar.kent.ac.uk/33611/
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://arxiv.org/abs/1801.02381

	Benchmarking
	Energy
	Memory consumption

	Measuring execution time
	Timestamping
	Benchmark design
	Summarizing benchmark results
	Repeating iterations
	Repeating executions and compilation
	Multi-level repetition

	Measuring speedup

