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About the course
About this course

Teachers

Michal Sojka C/C++, embedded systems, operating systems
David Siglak Java, servers, ...

m Writing fast programs
m Single (multi-core) computer, no distributed systems/cloud
m Interaction between software and hardware

m How general concepts apply to programs in both C/C++ and Java
i.e. how to use hardware efficiently from C/C++ and Java

m The course is not about comparing C/C++ and Java,
m but you should be able to make this comparison yourself at the end.
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About the course

Grading

m Exercises
m 7 small tasks
m semestral work (both C/C++ and Java)
m Maximum 60 points
® Minimum 30 points
m Exam
m Written test: max. 30 points
m Voluntary oral exam: 10 points
® Minimum: 20 points
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Basics

Efficient software

m There is no theory of how to write efficient software
m Writing efficient software is about:
m Knowledge of all layers involved
m Experience in knowing when and how performance can be a problem
m Skill in detecting and zooming in on the problems
m A good dose of common sense
m Best practices

m Patterns that occur regularly
m Typical mistakes
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Basics

Layers involved in software execution

C/C++ source code I

£
& C/C++ compiler

Native program

0s

Hardware

(CPUSs, busses, memory, caches)

m In the end, everything is
executed by hardware
m Majority of this course is about
how to tailor the code to use
the hardware efficiently

m C/C++ source code is
transformed into native
(machine) code by the compiler

m Compiler tries to optimize the
generated code

m Optimizations are often only
heuristics

m Native code is executed directly
or invokes OS services
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Basics

Layers involved in software execution

Java source code

|

Java compiler

| m Java source code is also

JIT-
compiled
code

Java program

JVM/native libraries

compiled
m Java program can execute

m interpreted by Java Virtual
Machine (JVM) or

m natively after being just-it-time
(JIT) compiled by JVM

m JVM is a native program

0s

m Java program can use native

libraries (JNI)

Hardware

(CPUSs, busses, memory, caches)

m .. long way from source to HW
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Basics

Fundamental theorem of software engineering

All problems in computer science can be solved by
another level of indirection

... except for the problem of too many layers of
indirection.

—David Wheeler

Layers of indirection in today’s systems

Hardware Software

m microcode, ISA m operating system kernel
m virtual memory, MMU m compiler
m buses, arbiters m language runtime

m application frameworks
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CPU - principle of operation

CPU

Registers | 3.

A

Memory

Fetch instruction from
memory

Fetch data from memory
Perform computation
Store the result to memory

C code and machine code

int a, b, r;
void func() {

r = a + b;
}
mov 0x100,%eax ; load a
add 0x104,%eax ; add b
mov %eax,0x108 ; store 7
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Hardware

Memory

m Source of many performance problems in today’s computers
m Reason: Memory is slow compared to CPUs!
m Solution: Caching = memory hierarchy

Capacity

Access Time )S(;agill;glt
Cost fer Uni
CcPU gegisters Upper Level
;ggs_ 5%‘: p (0.3-0.5 ns) prog./compiler
ps (0.3-0. Instr. Operands 1-8 bytes faster
L1 and L2 Cache L1 Cache oot
10s-100s K Bytes cache cntl
e ione! Blocks 32-64 bytes
$1000s/ GByte L2 Cache
cache cntl
Main Memory 64-128 bytes
G Bytes
80ns- 200ns | Memory |
~ $100/ GByte os
I Pages 4K-8K bytes
Disk
10s T Bytes, 10 ms H
(10,000,000 ns) | Disk |
~ $1/GByte N user/operator
Files Mbytes L
arger
Tape
infinite | Tape | Lower Level
~$1/ GByte
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Hardware
Latencies in computer systems

Event Latency Scaled
1 CPU cycle 0.3ns 1s
Level 1 cache access 0.9ns 3s
Level 2 cache access 2.8ns 9s
Level 3 cache access 12.9ns 43s
Main memory access (DRAM, from CPU) 120 ns 6 min
Solid-state disk I/0 (flash memory) 50-150 ps 2-6 days
Rotational disk I/0 1-10ms | 1-12 months
Internet: San Francisco to New York 40 ms 4 years
Internet: San Francisco to United Kingdom 81 ms 8 years
Internet: San Francisco to Australia 183 ms 19 years
TCP packet retransmit 1-3s | 105-117 years
0S virtualization (container) system reboot 4s 423 years
SCSI command timeout 30s 3 millennia
HW virtualization system reboot 40s 4 millennia
Physical server system reboot 5m 32 millenia
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Hardware
Computer performance and laws of physics

What distance travels light in vacuum during one
3 GHz CPU clock cycle?

10cm
Speed of light in silicon is even slower
Each gate delays the information a bit

It’s already difficult to pass information quickly from one side of the
chip to another

Physical distance plays important role in the speed of computation
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Hardware

Example: Intel-based system (single socket, 2009)

Memory Bus cPU

SATABus §

Lynnfield CPU

Source: Intel

Intel’s P55 platform

Source: ArsTechnica
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Making the hardware faster

Outline

Making the hardware faster
m Caches
m Instruction-level parallelism
m Task parallelism
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Making the hardware faster

Making the hardware faster

... and more tricky to use it efficiently from software

m Hardware designers intensively optimize their hardware

m These optimizations improve performance in common (average)
cases

m Using the HW in “uncommon” ways can drastically degrade the
performance

m The layers between source code and hardware complicate
understanding how is the hardware actually “used”

m What are the features that can be problematic from performance
point of view?

m We will look at them in more detail in the rest of the lectures.
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Making the hardware faster » Caches

Outline

Making the hardware faster
m Caches

17/43



Making the hardware faster » Caches

Caches

m Principle

m Smaller but faster memory
m Take advantage of spacial
and temporal locality of
memory accesses
performed by the code.
m Problems

m Random Access Memory
(RAM) is no longer RAM
from performance point of
view

m Management of multiple
copies of a single data...
(known as cache
coherence)

Capacity

Access Time Staging
r Unit
o eaarer Registers| Upper Level
s Bytes _
300 - 500 ps (0.3-0.5 ns) Tnstr. Operands ~ §g| %;'f:s'" Piler faster
L1and L2 Cache L1 Cache
10s-100s K Bytes cache entl
-1ns--10ns 32-64 bytes
$1000s/ GByte
cache cntl
Main Memory 64-128 bytes
G Bytes
~ $100/ GByte os
I Pages 4K-8K bytes
Disk
10s T Bytes, 10 ms i
(10,000,000 ns) Disk |
" operat
I Files Mbyten " y
arger
Tape
infinite | Tape Lower Level
sec-min
~§1/GByte

18/43



Making the hardware faster » Instruction-level parallelism
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Making the hardware faster

m Instruction-level parallelism
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Making the hardware faster » Instruction-level parallelism

Pipelining, branch prediction

Branch = if/else

Branch not taken Branch taken

Time Time Branch Penalty

—_— _— —>
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Example pipeline stages
E Fetch instruction
Decode instruction
Calculate operands

m Branch predictor tries to predict branch
target and condition

m If it fails, we pay branch penalty

m Here, branch penalty is a few cycles, but

Fetch operands it is much more severe with things like

Execute instruction superscalar CPUs are involved.
A Write output (result) 20/43



Making the hardware faster » Instruction-level parallelism

Superscalar CPUs

Instruction stream

CPU e

t=e+f
u=g+h
Registers | 3. > ALU V=U+Ii

Superscalar execution

>

r=a+b;s=c+d;t=e+f

1. 2. 4. u=g+h
' V=U-+i
M emory m Goal: Order instructions in a program to
use all execution units (e.g. ALUs) in
parallel

m Task for the compiler
m Complicates reading of assembler
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Making the hardware faster » Instruction-level parallelism

Example: AMD Bulldozer CPU

Module black

L1 instruction cache
64KB two-way

(incl 2 cores)

Integer Cluster 1
y 3 y 3
y 3

Sharod FP.
Reg File

L2 Data Cache
20488 (shared, Max)
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Making the hardware faster » Task parallelism
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Making the hardware faster » Task parallelism

Multiple CPUs

CPU CPU m Computers usually run

o ﬁ s ﬁ multiple programs

simultaneously

A A m Let’s execute them
| Memory interconnect/arbiter | simultaneously on two CPUs
4 m The CPUs can be on
Memory m single chip = multi-core

B multiple chips = multi-socket
m Performance problems: synchronization

m Communication between cores (via shared cache or memory
interconnect) is slow
m What is communication?
B Access to shared data in memory
B Mutex - e.g. to ensure mutually exclusive access to shared data
structure in memory
H synchronized keyword in Java
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Making the hardware faster » Task parallelism

Hyper-threaded CPU

CPU
Registers
Thread 1

Registers
Thread 0

Thread scheduler (HW)

_T

m “Cheaper variant”

m Duplicate just the registers,
not the execution engines
(ALU)

m Add HW scheduler to
simulate parallel execution

m When one HW thread waits
for memory, the other can
execute

m From SW point of view, it
looks like a multi-core CPU

m Imperfect
instruction-level-parallelism
(superscalar CPU) is

improved by task-parallellsrg5 o



Making the hardware faster » Task parallelism

Non-Uniform Memory Access (NUMA)

m Multi-socket system

m Each socket has locally
[ [ [ connected memory

£ m Other sockets access
the memory via

_ inter-socket
e interconnects (slower,
i ca 15%)
m Software sees all

memory

I*IJ
m SW (OS) should

068 868 1668 2468 3268 gllocate memory local to

could help

«Two possible mappings of memory addresses to
imemory location
26/43
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Making the hardware faster » Task parallelism

Out-of-order execution

Instruction stream

m Complicates synchronization

r=a+b

s=c+d m Other CPUs can see results
t=e+f of computations in different
u=g+h order

V=U+I When order matters?

a and ¢ are not cached, the restis: |ock = 1

Superscalar, out-of-order ;=_ z J_rg
execution =
lock =0

t=e+f,u=g+h

r—a+b's=c+d'v=u+i The above example will likely not

work, because accesses to “lock”
From a single CPU point of view, may be reordered.

everything is correct
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Making the hardware faster » Task parallelism

Embedded heterogeneous systems
Different CPUs/GPUs on a single chip

| 10 Coherent Masters ‘

2K-4K

Display
and Video
Sub-system

| MMU-400

Corelink CCI-400 Cache Coherent Interconnect

| TZC-400 |

J To Peripheral Interconnect

DDR/LPDDR. DDR/LPDDR

Source: ARM 28/43
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Energy is the new spped

SAMSUNG

m Today, we no longer want just fast software

m We also care about heating and battery life of |
our mobile phones ‘

m Good news: Fast software is also energy
efficient
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Power consumption of CMOS circuits

Two components:
m Static dissipation

m leakage current through P-N junctions etc.
m higher voltage — higher static dissipation

m Dynamic dissipation

m charging and discharging of load capacitance (useful + parasitic)
m short-circuit current

P, total — P static + P dyn
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Energy

Dynamic power consumption and gate delay

. v
@%-c-_\/2 _
A\ J J
c
N e C o V2

.C.V 1
Poyn=a-C- Vg*-f t:u@_
(Vag — V)% Vg

Low power = slow
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Methods to reduce power/energy consumption

m use better technology/smaller gates (HW engineers)

m use better placing and routing on the chip (HW engineers)

m reduce power supply Vpp and/or frequency = Dynamic voltage and
frequency scaling (OS job - apps can help)

m raising it back takes time (rump-up latency)
m deciding optimal sleep state to take requires knowing the future
m recent Android versions have API for “predicting future”

m reduce activity (clock gating = switch off parts of the chip that are
not used) [job for OS and HW, apps can help]

m use better algorithms and/or data structures (SW engineers)
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A Exercise today
m C/C++ compiler
m Profiling
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Exercise today
Exercises example

m Ellipse detection using RANSAC algorithm

Phase
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Exercise today » C/C++ compiler
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Exercise today » C/C++ compiler
C/C++ compiler

m Generates native code from C/C++ source code

m Popular compilers: GCC, Clang (LLVM), icc, MSVC, ...
m Perform many “optimization passes”
m Those will be covered in a separate lecture

m For now, very brief overview of what you might need today
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Exercise today » C/C++ compiler

Compiler flags (gcc, clang)

m Documentation is your friend:
m Command (p)info gcc
B https://gcc.gnu.org/onlinedocs/
m Clang’s flags are mostly compatible with gcc

m Generate debugging information: -g
m Optimization level: -00, -01, -02, -03, -0s (size)
m -02 is considered “safe”, -03 may be buggy
m Individual optimization passes:
-free-ccp, -fast-math, -fomit-frame-pointer, -free-vectorize, ...
m Find out which optimizations passes are active for given optimization level:
g++ -Q -02 --help=optimizers
m Code generation
B -fpic, -fpack-struct, -fshort-enums
m Machine dependent:
B Generate instructions for given micro-architecture: -march=haswell,
-march=skylake (will not run on older hardware)
B Use only “older” instructions, but schedule them for for given parch:
-mtune=haswell, -mtune=native,
B -m32, -minline-all-stringops, ...
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Exercise today » Profiling
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Exercise today » Profiling
Profiling

m Profiling: Identifies where your code is slow

m “Premature optimization is the root of all evil”
— D. Knuth

m Software is complex!
m We want to optimize the bottlenecks, not all code

m Real world codebases are big: Reading all the code is a waste of
time (for optimizing)
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Exercise today » Profiling
Bottlenecks

Sources:
m code
B memory
m network
m disk
...
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Exercise today » Profiling

Linux Performance

Tools

Linux Performance Tools

Various, observabilty:  Various, static:

Various, tracing:

sapabis

intel_gpu_\
© frequency

el uinte
i cpuid lscpu
turbostat
rdmsr
cPu
Interconnect

“tiptop

i
ik

profile

Power
Supply
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. Smartctl fdisk -1 | /proc/swaps stcontig 11dptool
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{tatic performance tools |

per-tools/bec tracing tools
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Profiling tools

In order to do: You can use:

Manual instrumentation printf and similar

Static instrumentation gprof

Dynamic instrumentation callgrind, cachegrind
Performance counters oprofile, perf

Heap profiling massif, google-perftools

* Instrumentation = modifying the code the perform
measurements

—



Static instrumentation: gprof

* gcC-pg ... -0 program

- Adds profiling code to every function/basic block
e ./program

— generates gmon.out

* gprof program

Flat profile:

Each sample counts as 0.01 seconds.

o

% cumulative self self total

time seconds seconds calls s/call s/call name
33.86 15.52 15.52 1 15.52 15.52 func2
33.82 31.02 15.50 1 15.50 15.50 new_funcl

33.29 46.27 15.26 1 15.26 30.75 funcl .



Event sampling

* Basicidea
- when an interesting event occurs, look at where program executes
- resultis histogram of addresses and event counts
* Events
- time, cache miss, branch-prediction miss, page fault
* Implementation
- timerinterrupt > upon entry, program address is stored on stack

— each event has counting register

* when threshold is reached, an interrupt is generated

—



Performance counters

* Hardware inside the CPU (Intel, ARM,...)

* Software can configure which events to count and
when/whether to generate interrupts

* In many cases can be accessed from application code

* Documentation:

- Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol
ume 3: System Programming Guide

- Intel® 64 and IA-32 Architectures Optimization Reference Manual

- ARM® Architecture Reference Manual ARMvS, for ARMv8-A architect
ure profile

—



* linux-tools package

* Can monitor both HW and SW events
* Can analyze:
- single application

- whole system

https://perf.wiki.kernel.org/

—



perf usage

* perf list

* perf stat -e cycles -e branch-misses -e branches -e cache-
misses -e cache-references ./vecadd

Performance counter stats for './vecadd':
1,898,543,656 cycles (79.98%
267,572 branch-misses # 0.08% of all branches (79.97%)
348,090,074 branches (79.95%
20,232,628 cache-misses # 75.588 % of all cache refs (80.51%)
26,767,103 cache-references (80.09%)

0.619472916 seconds time elapsed

—



perf usage ll.

* perfrecord -e cycles -e branch-misses ./vecadd

* perfreport




Exercise today » Profiling

Useful resources

m Denis Bakhvalov’s blog: https://dendibakh.github.io/notes/

B https://dendibakh.github.io/blog/2019/02/16/
Performance-optimization-contest-1
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