
B4M36ESW: Efficient software
Lecture 1: Introduction

Michal Sojka
michal.sojka@cvut.cz

February 19, 2019

About the course

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

2 / 43

About the course

About this course

Teachers
Michal Sojka C/C++, embedded systems, operating systems
David Šišlák Java, servers, …

Scope

Writing fast programs
Single (multi-core) computer, no distributed systems/cloud
Interaction between software and hardware
How general concepts apply to programs in both C/C++ and Java
i.e. how to use hardware efficiently from C/C++ and Java
The course is not about comparing C/C++ and Java,

but you should be able to make this comparison yourself at the end.

3 / 43

About the course

Grading

Exercises
7 small tasks
semestral work (both C/C++ and Java)
Maximum 60 points
Minimum 30 points

Exam
Written test: max. 30 points
Voluntary oral exam: 10 points
Minimum: 20 points

4 / 43

Basics

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

5 / 43

Basics

Efficient software

There is no theory of how to write efficient software
Writing efficient software is about:

Knowledge of all layers involved
Experience in knowing when and how performance can be a problem
Skill in detecting and zooming in on the problems
A good dose of common sense

Best practices
Patterns that occur regularly
Typical mistakes

6 / 43

Basics

Layers involved in software execution

Hardware
(CPUs, busses, memory, caches)

OS

C/C++ source code

C/C++ compileras
m

Native program

Java program

Java source code

Java compiler

JVM/native libraries

JIT-
compiled

code

In the end, everything is
executed by hardware

Majority of this course is about
how to tailor the code to use
the hardware efficiently

C/C++ source code is
transformed into native
(machine) code by the compiler

Compiler tries to optimize the
generated code
Optimizations are often only
heuristics

Native code is executed directly
or invokes OS services

7 / 43

Basics

Layers involved in software execution

Hardware
(CPUs, busses, memory, caches)

OS

C/C++ source code

C/C++ compileras
m

Native program

Java program

Java source code

Java compiler

JVM/native libraries

JIT-
compiled

code

Java source code is also
compiled
Java program can execute

interpreted by Java Virtual
Machine (JVM) or
natively after being just-it-time
(JIT) compiled by JVM

JVM is a native program
Java program can use native
libraries (JNI)
… long way from source to HW

7 / 43

Basics

Fundamental theorem of software engineering

All problems in computer science can be solved by

another level of indirection

... except for the problem of too many layers of

indirection.

—David Wheeler

Layers of indirection in today’s systems
Hardware

microcode, ISA
virtual memory, MMU
buses, arbiters

Software
operating system kernel
compiler
language runtime
application frameworks

8 / 43

Hardware

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

9 / 43

Hardware

CPU – principle of operation

CPU

Memory

1. 2. 4.

3.Registers ALU

1 Fetch instruction from
memory

2 Fetch data from memory
3 Perform computation
4 Store the result to memory

C code and machine code
int a, b, r;
void func() {

r = a + b;
}
mov 0x100,%eax ; load a
add 0x104,%eax ; add b
mov %eax,0x108 ; store r

10 / 43

Hardware

Memory
Source of many performance problems in today’s computers
Reason: Memory is slow compared to CPUs!
Solution: Caching⇒ memory hierarchy

11 / 43

Hardware

Latencies in computer systems
Event Latency Scaled
1 CPU cycle 0.3 ns 1 s

Level 1 cache access 0.9 ns 3 s

Level 2 cache access 2.8 ns 9 s

Level 3 cache access 12.9 ns 43 s

Main memory access (DRAM, from CPU) 120 ns 6 min

Solid-state disk I/O (flash memory) 50–150 µs 2–6 days

Rotational disk I/O 1–10 ms 1–12 months

Internet: San Francisco to New York 40 ms 4 years

Internet: San Francisco to United Kingdom 81 ms 8 years

Internet: San Francisco to Australia 183 ms 19 years

TCP packet retransmit 1–3 s 105–117 years

OS virtualization (container) system reboot 4 s 423 years

SCSI command timeout 30 s 3 millennia

HW virtualization system reboot 40 s 4 millennia

Physical server system reboot 5 m 32 millenia
12 / 43

Hardware

Computer performance and laws of physics

What distance travels light in vacuum during one
3GHz CPU clock cycle?

10 cm
Speed of light in silicon is even slower
Each gate delays the information a bit
It’s already difficult to pass information quickly from one side of the
chip to another
Physical distance plays important role in the speed of computation

13 / 43

Hardware

Example: Intel-based system (single socket, 2009)

Intel’s P55 platform
Source: ArsTechnica

Lynnfield CPU
Source: Intel

14 / 43

Making the hardware faster

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

15 / 43

Making the hardware faster

Making the hardware faster
… and more tricky to use it efficiently from software

Hardware designers intensively optimize their hardware
These optimizations improve performance in common (average)
cases
Using the HW in “uncommon” ways can drastically degrade the
performance
The layers between source code and hardware complicate
understanding how is the hardware actually “used”
What are the features that can be problematic from performance
point of view?
We will look at them in more detail in the rest of the lectures.

16 / 43

Making the hardware faster » Caches

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

17 / 43

Making the hardware faster » Caches

Caches

Principle
Smaller but faster memory
Take advantage of spacial
and temporal locality of
memory accesses
performed by the code.

Problems
Random Access Memory
(RAM) is no longer RAM
from performance point of
view
Management of multiple
copies of a single data…
(known as cache
coherence)

18 / 43

Making the hardware faster » Instruction-level parallelism

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

19 / 43

Making the hardware faster » Instruction-level parallelism

Pipelining, branch prediction
Branch = if/else

Branch not taken

Example pipeline stages
1 Fetch instruction
2 Decode instruction
3 Calculate operands
4 Fetch operands
5 Execute instruction
6 Write output (result)

Branch taken

Branch predictor tries to predict branch
target and condition
If it fails, we pay branch penalty
Here, branch penalty is a few cycles, but
it is much more severe with things like
superscalar CPUs are involved.

20 / 43

Making the hardware faster » Instruction-level parallelism

Superscalar CPUs

CPU

Memory

1. 2. 4.

3.Registers ALU

Instruction stream
r = a + b
s = c + d
t = e + f
u = g + h
v = u + i

Superscalar execution
r = a + b; s = c + d; t = e + f
u = g + h
v = u + i

Goal: Order instructions in a program to
use all execution units (e.g. ALUs) in
parallel
Task for the compiler
Complicates reading of assembler

21 / 43

Making the hardware faster » Instruction-level parallelism

Example: AMD Bulldozer CPU

22 / 43

Making the hardware faster » Task parallelism

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

23 / 43

Making the hardware faster » Task parallelism

Multiple CPUs

CPU

Memory

Registers ALU

CPU

Registers ALU

Memory interconnect/arbiter

Computers usually run
multiple programs
simultaneously
Let’s execute them
simultaneously on two CPUs
The CPUs can be on

single chip⇒ multi-core
multiple chips⇒ multi-socket

Performance problems: synchronization
Communication between cores (via shared cache or memory
interconnect) is slow
What is communication?

Access to shared data in memory
Mutex – e.g. to ensure mutually exclusive access to shared data
structure in memory
synchronized keyword in Java

24 / 43

Making the hardware faster » Task parallelism

Hyper-threaded CPU

Registers
Thread 1

Registers

CPU

Memory

Registers
Thread 0 ALU

T
hr

ea
d

sc
he

du
le

r
(H

W
)

“Cheaper variant”
Duplicate just the registers,
not the execution engines
(ALU)
Add HW scheduler to
simulate parallel execution
When one HW thread waits
for memory, the other can
execute
From SW point of view, it
looks like a multi-core CPU
Imperfect
instruction-level-parallelism
(superscalar CPU) is
improved by task-parallelism

25 / 43

Making the hardware faster » Task parallelism

Non-Uniform Memory Access (NUMA)

Node 0 Node 1 Node 2 Node 3

0 GB 8 GB 16 GB 24 GB 32 GB

Multi-socket system
Each socket has locally
connected memory
Other sockets access
the memory via
inter-socket
interconnects (slower,
ca 15%)
Software sees all
memory
SW (OS) should
allocate memory local to
where it runs, apps
could help

←Two possible mappings of memory addresses to
memory location

26 / 43

Making the hardware faster » Task parallelism

Out-of-order execution

Instruction stream
r = a + b
s = c + d
t = e + f
u = g + h
v = u + i

a and c are not cached, the rest is:

Superscalar, out-of-order
execution
t = e + f; u = g + h
r = a + b; s = c + d; v = u + i

From a single CPU point of view,
everything is correct

Complicates synchronization
Other CPUs can see results
of computations in different
order

When order matters?
lock = 1
r = a + b
s = a - b
lock = 0

The above example will likely not
work, because accesses to “lock”
may be reordered.

27 / 43

Making the hardware faster » Task parallelism

Embedded heterogeneous systems
Different CPUs/GPUs on a single chip

Source: ARM 28 / 43

Energy

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

29 / 43

Energy

Energy is the new spped

Today, we no longer want just fast software
We also care about heating and battery life of
our mobile phones
Good news: Fast software is also energy
efficient

30 / 43

Energy

Power consumption of CMOS circuits

Two components:
Static dissipation

leakage current through P-N junctions etc.
higher voltage→ higher static dissipation

Dynamic dissipation
charging and discharging of load capacitance (useful + parasitic)
short-circuit current

Ptotal = Pstatic + Pdyn

31 / 43

Energy

Dynamic power consumption and gate delay

Charging the parasite capacities needs energy

Power consumption
Pdyn = a · C · Vdd 2 · f

Gate delay

t = γ · C · Vdd
(Vdd − VT)2

≈ 1

Vdd

Low power⇒ slow

32 / 43

Energy

Methods to reduce power/energy consumption

use better technology/smaller gates (HW engineers)
use better placing and routing on the chip (HW engineers)
reduce power supply VDD and/or frequency = Dynamic voltage and
frequency scaling (OS job – apps can help)

raising it back takes time (rump-up latency)
deciding optimal sleep state to take requires knowing the future
recent Android versions have API for “predicting future”

reduce activity (clock gating = switch off parts of the chip that are
not used) [job for OS and HW, apps can help]
use better algorithms and/or data structures (SW engineers)

33 / 43

Exercise today

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

34 / 43

Exercise today

Exercises example
Ellipse detection using RANSAC algorithm

35 / 43

Exercise today » C/C++ compiler

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

36 / 43

Exercise today » C/C++ compiler

C/C++ compiler

Generates native code from C/C++ source code
Popular compilers: GCC, Clang (LLVM), icc, MSVC, …
Perform many “optimization passes”

Those will be covered in a separate lecture
For now, very brief overview of what you might need today

37 / 43

Exercise today » C/C++ compiler

Compiler flags (gcc, clang)
Documentation is your friend:

Command (p)info gcc
https://gcc.gnu.org/onlinedocs/
Clang’s flags are mostly compatible with gcc

Generate debugging information: -g
Optimization level: -O0, -O1, -O2, -O3, -Os (size)

-O2 is considered “safe”, -O3 may be buggy
Individual optimization passes:
-free-ccp, -fast-math, -fomit-frame-pointer, -free-vectorize, ...
Find out which optimizations passes are active for given optimization level:
g++ -Q -O2 --help=optimizers

Code generation
-fpic, -fpack-struct, -fshort-enums
Machine dependent:

Generate instructions for given micro-architecture: -march=haswell,
-march=skylake (will not run on older hardware)
Use only “older” instructions, but schedule them for for given µarch:
-mtune=haswell, -mtune=native,
-m32, -minline-all-stringops, ...

38 / 43

https://gcc.gnu.org/onlinedocs/

Exercise today » Profiling

Outline

1 About the course

2 Basics

3 Hardware

4 Making the hardware faster
Caches
Instruction-level parallelism
Task parallelism

5 Energy

6 Exercise today
C/C++ compiler
Profiling

39 / 43

Exercise today » Profiling

Profiling

Profiling: Identifies where your code is slow
“Premature optimization is the root of all evil”

— D. Knuth
Software is complex!
We want to optimize the bottlenecks, not all code
Real world codebases are big: Reading all the code is a waste of
time (for optimizing)

40 / 43

Exercise today » Profiling

Bottlenecks

Sources:
code
memory
network
disk
...

41 / 43

Exercise today » Profiling

Linux Performance Tools

42 / 43

Profiling tools

In order to do: You can use:
Manual instrumentation printf and similar
Static instrumentation gprof
Dynamic instrumentation callgrind, cachegrind
Performance counters oprofile, perf
Heap profiling massif, google-perfools

● Instrumentation = modifying the code the perform
measurements

Static instrumentation: gprof

● gcc -pg ... -o program
– Adds profiling code to every function/basic block

● ./program
– generates gmon.out

● gprof program
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
33.86 15.52 15.52 1 15.52 15.52 func2
33.82 31.02 15.50 1 15.50 15.50 new_func1
33.29 46.27 15.26 1 15.26 30.75 func1
0.07 46.30 0.03 main

Event sampling

● Basic idea
– when an interesting event occurs, look at where program executes
– result is histogram of addresses and event counts

● Events
– time, cache miss, branch-prediction miss, page fault

● Implementation
– timer interrupt → upon entry, program address is stored on stack
– each event has counting register

● when threshold is reached, an interrupt is generated

Performance counters

● Hardware inside the CPU (Intel, ARM, ...)
● Sofware can configure which events to count and

when/whether to generate interrupts
● In many cases can be accessed from application code
● Documentation:

– Intel® 64 and IA-32 Architectures Sofware Developer’s Manual, Vol
ume 3: System Programming Guide

– Intel® 64 and IA-32 Architectures Optimization Reference Manual
– ARM® Architecture Reference Manual ARMv8, for ARMv8-A architect

ure profile

perf

● linux-tools package
● Can monitor both HW and SW events
● Can analyze:

– single application
– whole system
– ...

● https://perf.wiki.kernel.org/

perf usage

● perf list
● perf stat -e cycles -e branch-misses -e branches -e cache-

misses -e cache-references ./vecadd
 Performance counter stats for './vecadd':

 1,898,543,656 cycles (79.98%)
 267,572 branch-misses # 0.08% of all branches (79.97%)
 348,090,074 branches (79.95%)
 20,232,628 cache-misses # 75.588 % of all cache refs (80.51%)
 26,767,103 cache-references (80.09%)

 0.619472916 seconds time elapsed

perf usage II.

● perf record -e cycles -e branch-misses ./vecadd
● perf report

Exercise today » Profiling

Useful resources

Denis Bakhvalov’s blog: https://dendibakh.github.io/notes/
https://dendibakh.github.io/blog/2019/02/16/
Performance-optimization-contest-1

43 / 43

https://dendibakh.github.io/notes/
https://dendibakh.github.io/blog/2019/02/16/Performance-optimization-contest-1
https://dendibakh.github.io/blog/2019/02/16/Performance-optimization-contest-1

	About the course
	Basics
	Hardware
	Making the hardware faster
	Caches
	Instruction-level parallelism
	Task parallelism

	Energy
	Exercise today
	C/C++ compiler
	Profiling

