Some Mappings by the Fundamental Matrix

$$
\begin{aligned}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} & & \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), & & \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right) \\
\underline{\mathbf{e}}_{1} & \simeq \mathbf{H}_{e}^{-1} \underline{\mathbf{e}}_{2} & & \underline{\mathbf{e}}_{2} \simeq \mathbf{H}_{e} \underline{\mathbf{e}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1} \\
\mathbf{l}_{1} & \simeq \mathbf{H}_{e}^{\top} \underline{\mathbf{l}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{\mathbf{l}}_{1} \\
\mathbf{l}_{1} & \simeq \mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times} \underline{\mathbf{l}}_{2} & & \underline{l}_{2} \simeq \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}
\end{aligned}
$$

- $\mathbf{F}\left[\underline{e}_{1}\right]_{\times}$maps lines to lines but it is not a homography
- $\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}$ is the epipolar homography $\rightarrow 77$ $\mathbf{H}_{e}^{-\top}$ maps epipolar lines to epipolar lines, where

$$
\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}
$$

you have seen this $\rightarrow 59$

-Representation Theorem for Fundamental Matrices

Theorem: Every 3×3 matrix of rank 2 is a fundamental matrix.

Proof.

Converse: By the definition $\mathbf{F}=\mathbf{H}^{-\top}\left[\mathbf{e}_{1}\right]_{\times}$is a 3×3 matrix of rank 2 .

Direct:

1. let $\mathbf{A}=\mathbf{U D V}^{\top}$ be the SVD of a 3×3 matrix \mathbf{A} of rank 2 ; then $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right)$, $\lambda_{1}, \lambda_{2}>0$
2. we can write $\mathbf{D}=\mathbf{B C}$, where $\mathbf{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \mathbf{C}=\operatorname{diag}(1,1,0), \lambda_{3}=1$ (w.l.o.g.)
3. then $\mathbf{A}=\mathbf{U B C V}{ }^{\top}=\mathbf{U B C} \underbrace{\mathbf{W} \mathbf{W}^{\top}}_{\mathbf{I}} \mathbf{V}^{\top}$ with \mathbf{W} rotation

4. we look for a rotation \mathbf{W} that maps \mathbf{C} to a skew-symmetric \mathbf{S}, i.e. $\mathbf{S}=\mathbf{C W}$
5. then $\mathbf{W}=\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right],|\alpha|=1$, and $\mathbf{S}=[\mathbf{s}]_{\times}, \mathbf{s}=(0,0,1)$
6. we can write

$$
\begin{equation*}
\mathbf{A}=\mathbf{U B}[\mathbf{s}]_{\times} \mathbf{W}^{\top} \mathbf{V}^{\top}=\stackrel{\circledast 1}{\cdots}=\underbrace{\mathbf{U B}(\mathbf{V} \mathbf{W})^{\top}}_{\mathbf{H}^{-\top}}\left[\mathbf{v}_{3}\right]_{\times}, \quad \mathbf{v}_{3}-3 \text { rd column of } \mathbf{V} \tag{12}
\end{equation*}
$$

7. \mathbf{H} regular $\Rightarrow \mathbf{A}$ does the job of a fundamental matrix, with epipole \mathbf{v}_{3} and epipolar homography \mathbf{H}

- we also got a (non-unique: $\alpha= \pm 1$) decomposition formula for fundamental matrices
- it follows there is no constraint on \mathbf{F} except the rank

-Representation Theorem for Essential Matrices

Theorem

Let \mathbf{E} be a 3×3 matrix with $S V D \mathbf{E}=\mathbf{U D V}^{\top}$. Then \mathbf{E} is essential iff $\mathbf{D} \simeq \operatorname{diag}(1,1,0)$.

Proof.

Direct:
If \mathbf{E} is an essential matrix, then the epipolar homography is a rotation $(\rightarrow 77)$ and $\mathbf{U B}(\mathbf{V W})^{\top}$ in (12) must be orthogonal, therefore $\mathbf{B}=\lambda \mathbf{I}$.

Converse:
\mathbf{E} is fundamental with $\mathbf{D}=\lambda \operatorname{diag}(1,1,0)$ then we do not need \mathbf{B} (as if $\mathbf{B}=\lambda \mathbf{I}$) in (12) and $\mathbf{U}(\mathbf{V W})^{\top}$ is orthogonal, as required.

Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times}$

1. compute SVD of $\mathbf{E}=\mathbf{U D V}^{\top}$ and verify $\mathbf{D}=\lambda \operatorname{diag}(1,1,0)$
2. if $\operatorname{det} \mathbf{U}<0$ change signs $\mathbf{U} \mapsto-\mathbf{U}, \mathbf{V} \mapsto-\mathbf{V}$
the overall sign is dropped
3. compute

Notes

$$
\mathbf{R}_{21}=\mathbf{U} \underbrace{\left[\begin{array}{ccc}
0 & \alpha & 0 \tag{13}\\
-\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{W}} \mathbf{V}^{\top}, \quad \mathbf{t}_{21}=-\beta \mathbf{u}_{3}, \quad|\alpha|=1, \quad \beta \neq 0
$$

- $\mathbf{v}_{3} \simeq \mathbf{R}_{21}^{\top} \mathbf{t}_{21}$ by (12), hence $\mathbf{R}_{21} \mathbf{v}_{3} \simeq \mathbf{t}_{21} \simeq \mathbf{u}_{3}$ since it must fall in left null space by $\mathbf{E} \simeq\left[\mathbf{u}_{3}\right]_{\times} \mathbf{R}$
- \mathbf{t}_{21} is recoverable up to scale β and direction $\operatorname{sign} \beta$
- the result for \mathbf{R}_{21} is unique up to $\alpha= \pm 1$
despite non-uniqueness of SVD
- change of sign in α rotates the solution by 180° about \mathbf{t}_{21}

$$
\text { since }-\mathbf{W}=\mathbf{W}^{\top}
$$

$$
\mathbf{R}(\alpha)=\mathbf{U W} \mathbf{V}^{\top}, \mathbf{R}(-\alpha)=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \Rightarrow \mathbf{T}=\mathbf{R}(-\alpha) \mathbf{R}^{\top}(\alpha)=\cdots=\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top}
$$ which is a rotation by 180° about $\mathbf{u}_{3}=\mathbf{t}_{21}$:

$U=\left[\mu_{1}, \boldsymbol{M}_{2}, \mu_{3}\right] \quad \mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \mathbf{u}_{3}=\mathbf{U}\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\mathbf{u}_{3}$

- 4 solution sets for 4 sign combinations of α, β
see next for geometric interpretation

-Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $\mathbf{t}_{21}=-\mathbf{b}$ and \mathbf{W} rotates about the baseline \mathbf{b}.

- chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case
[H\&Z, Sec. 9.6.3]

7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k=7$ correspondences, estimate f. m. F.

$$
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=0, \quad i=1, \ldots, k, \quad \underline{\text { known: }} \quad \underline{\mathbf{x}}_{i}=\left(u_{i}^{1}, v_{i}^{1}, 1\right), \quad \underline{\mathbf{y}}_{i}=\left(u_{i}^{2}, v_{i}^{2}, 1\right)
$$

terminology: correspondence $=$ truth, later: match $=$ algorithm's result; hypothesized corresp.

Solution:

$$
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=\left(\underline{\mathbf{y}}_{i} \underline{\mathbf{x}}_{i}^{\top}\right): \mathbf{F}=\left(\operatorname{vec}\left(\underline{\mathbf{y}}_{i} \underline{\mathbf{x}}_{i}^{\top}\right)\right)^{\top} \operatorname{vec}(\mathbf{F})
$$

$$
\operatorname{vec}(\mathbf{F})=\left[\begin{array}{lllll}
f_{11} & f_{21} & f_{31} & \cdots & f_{33}
\end{array}\right]^{\top} \in \mathbb{R}^{9} \quad \text { column vector from matrix }
$$

$$
\mathbf{D}=\left[\begin{array}{c}
\left(\operatorname{vec}\left(\mathbf{y}_{1} \mathbf{x}_{1}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{2} \mathbf{x}_{2}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{3} \mathbf{x}_{3}^{\top}\right)\right)^{\top} \\
\vdots \\
\left(\operatorname{vec}\left(\mathbf{y}_{k} \mathbf{x}_{k}^{\top}\right)\right)^{\top}
\end{array}\right]=\left[\begin{array}{ccccccccc}
u_{1}^{1} u_{1}^{2} & u_{1}^{1} v_{1}^{2} & u_{1}^{1} & u_{1}^{2} v_{1}^{1} & v_{1}^{1} v_{1}^{2} & v_{1}^{1} & u_{1}^{2} & v_{1}^{2} & 1 \\
u_{2}^{1} u_{2}^{2} & u_{2}^{1} v_{2}^{2} & u_{2}^{1} & u_{2}^{2} v_{2}^{1} & v_{2}^{1} v_{2}^{2} & v_{2}^{1} & u_{2}^{2} & v_{2}^{2} & 1 \\
u_{3}^{1} u_{3}^{2} & u_{3}^{1} v_{3}^{2} & u_{3}^{1} & u_{3}^{2} v_{3}^{1} & v_{3}^{1} v_{3}^{2} & v_{3}^{1} & u_{3}^{2} & v_{3}^{2} & 1 \\
\vdots & & & & & & & & \vdots \\
u_{k}^{1} u_{k}^{2} & u_{k}^{1} v_{k}^{2} & u_{k}^{1} & u_{k}^{2} v_{k}^{1} & v_{k}^{1} v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1
\end{array}\right] \in \mathbb{R}^{k, 9}
$$

$$
V=U\left[\begin{array}{ll}
\cdot & \\
\cdot & \varepsilon
\end{array}\right] \quad D \operatorname{vec}(F)=0 \quad\binom{n}{8} \quad\binom{M}{7}
$$

-7-Point Algorithm Continued

$$
\mathbf{D} \operatorname{vec}(\mathbf{F})=\mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k, 9}
$$

- for $k=7$ we have a rank-deficient system, the null-space of \mathbf{D} is 2-dimensional
- but we know that $\operatorname{det} \mathbf{F}=0$, hence

1. find a basis of the null space of $\mathbf{D}: \mathbf{F}_{1}, \mathbf{F}_{2}$
by SVD or QR factorization
2. get up to 3 real solutions for α from

$$
f(\alpha)=0 \quad \operatorname{det}\left(\alpha \mathbf{F}_{1}+(1-\alpha) \mathbf{F}_{2}\right)=0 \quad \text { cubic equation in } \alpha
$$

3. get up to 3 fundamental matrices $\mathbf{F}=\alpha_{i} \mathbf{F}_{1}+\left(1-\alpha_{i}\right) \mathbf{F}_{2}$

- the result may depend on image (domain) transformations
- normalization improves conditioning
$\rightarrow 91$
- this gives a good starting point for the full algorithm
$\rightarrow 107$
- dealing with mismatches need not be a part of the 7-point algorithm
$\rightarrow 108$

Degenerate Configurations for Fundamental Matrix Estimation

When is \mathbf{F} not uniquely determined from any number of correspondences? [H\&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide $\mathbf{t}_{21}=0: \quad \mathbf{H}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}$
b) camera moves but all 3D points lie in a plane (\mathbf{n}, d): $\quad \mathbf{H}=\mathbf{K}_{2}\left(\mathbf{R}_{21}-\mathbf{t}_{21} \mathbf{n}^{\top} / d\right) \mathbf{K}_{1}^{-1}$

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

- there are 3 solutions for \mathbf{F}

notes

- estimation of $\mathbf{E} \underline{\text { can }}$ deal with planes: $[\underline{s}]_{\times} \mathbf{H}$ is essential matrix iff $\underline{s}=\lambda \mathbf{t}_{21}$ (see Case 1.b)
- a complete treatment with additional degenerate configurations in [H\&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity

$$
\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2} \underset{\sim}{\mathbf{F}} \underline{\mathbf{m}}_{1}
$$

notation: $\underline{\mathbf{m}} \underset{\sim}{\mathbf{n}}$ means $\underline{\mathbf{m}}=\lambda \underline{\mathbf{n}}, \lambda>0$

- we can read the constraint as $\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2} \underset{\sim}{\sim} \mathbf{H}_{e}^{-\top}\left(\mathbf{e}_{1} \times \underline{\mathbf{m}}_{1}\right)$
- note that the constraint is not invariant to the change of either sign of $\underline{\mathbf{m}}_{i}$
- all 7 correspondence in 7-point alg. must have the same sign
see later
- this may help reject some wrong matches, see $\rightarrow 108$
[Chum et al. 2004]
- an even more tight constraint: scene points in front of both cameras
expensive
this is called chirality constraint

5-Point Algorithm for Relative Camera Orientation

Problem: Given $\left\{m_{i}, m_{i}^{\prime}\right\}_{i=1}^{5}$ corresponding image points and calibration matrix \mathbf{K}, recover the camera motion \mathbf{R}, \mathbf{t}.

Obs:

1. $\mathrm{E}-8$ numbers
2. $\mathbf{R}-3 \mathrm{DOF}, \mathrm{t}-2 \mathrm{DOF}$ only, in total 5 DOF \rightarrow we need $8-5=3$ constraints on \mathbf{E}
3. E essential iff it has two equal singular values and the third is zero $\rightarrow 80$

This gives an equation system:

\circledast P1; 1pt: verify this equation from $\mathbf{E}=\mathbf{U D V}^{\top}, \mathbf{D}=\lambda \operatorname{diag}(1,1,0)$

1. estimate \mathbf{E} by SVD from $\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime}=0$ by the null-space method

4D null space
2. this gives $\mathbf{E}=x \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}+\mathbf{E}_{4}$
3. at most 10 (complex) solutions for x, y, z from the cubic constraints

- when all 3D points lie on a plane: at most 2 real solutions (twisted-pair)
can be disambiguated in 3 views or by chirality constraint $(\rightarrow 82)$ unless all 3D points are closer to one camera
- 6-point problem for unknown f
[Kukelova et al. BMVC 2008]
- resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

Thank You

