
ISome Mappings by the Fundamental Matrix
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0 = m>2 Fm1

e1 ' null(F), e2 ' null(F>)

e1 ' H−1
e e2 e2 ' Hee1

l1 ' F>m2 l2 ' Fm1

l1 ' H>e l2 l2 ' H−>e l1

l1 ' F>[e2]×l2 l2 ' F[e1]×l1

m⊤
2 Fm1 = 0m1 m2

l1l2

F⊤F

H−⊤
e or F [e1]×

H⊤
e or F⊤[e2]×

• F[e1]× maps lines to lines but it is not a homography

• He = Q2Q−1
1 is the epipolar homography→77

H−>e maps epipolar lines to epipolar lines, where

He = Q2Q−1
1 = K2R21K−1

1

you have seen this →59
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IRepresentation Theorem for Fundamental Matrices

Theorem: Every 3× 3 matrix of rank 2 is a fundamental matrix.

Proof.
Converse: By the definition F = H−>[e1]× is a 3× 3 matrix of rank 2.

Direct:

1. let A = UDV> be the SVD of a 3× 3 matrix A of rank 2; then D = diag(λ1, λ2, 0),
λ1, λ2 > 0

2. we can write D = BC, where B = diag(λ1, λ2, λ3), C = diag(1, 1, 0), λ3 = 1 (w.l.o.g.)

3. then A = UBCV> = UBC WW>︸ ︷︷ ︸
I

V> with W rotation

4. we look for a rotation W that maps C to a skew-symmetric S, i.e. S = CW

5. then W =

 0 α 0
−α 0 0
0 0 1

, |α| = 1, and S = [s]×, s = (0, 0, 1)

6. we can write

A = UB[s]×W>V> =
~ 1· · · = UB(VW)>︸ ︷︷ ︸

H−>

[v3]×, v3 – 3rd column of V (12)

7. H regular ⇒ A does the job of a fundamental matrix, with epipole v3 and epipolar
homography H ut

• we also got a (non-unique: α = ±1) decomposition formula for fundamental matrices

• it follows there is no constraint on F except the rank
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IRepresentation Theorem for Essential Matrices

Theorem

Let E be a 3× 3 matrix with SVD E = UDV>. Then E is essential iff D ' diag(1, 1, 0).

Proof.
Direct:

If E is an essential matrix, then the epipolar homography is a rotation (→77) and
UB(VW)> in (12) must be orthogonal, therefore B = λI.

Converse:

E is fundamental with D = λ diag(1, 1, 0) then we do not need B (as if B = λI) in (12)
and U(VW)> is orthogonal, as required.

ut
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IEssential Matrix Decomposition

We are decomposing E to E = [−t21]×R21 = R21[−R>21t21]× [H&Z, sec. 9.6]

1. compute SVD of E = UDV> and verify D = λdiag(1, 1, 0)
2. if detU < 0 change signs U 7→ −U, V 7→ −V the overall sign is dropped

3. compute

R21 = U

 0 α 0
−α 0 0
0 0 1


︸ ︷︷ ︸

W

V>, t21 = −β u3, |α| = 1, β 6= 0 (13)

Notes

• v3 ' R>21t21 by (12), hence R21v3 ' t21 ' u3 since it must fall in left null space by
E ' [u3]×R

• t21 is recoverable up to scale β and direction signβ

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• change of sign in α rotates the solution by 180◦ about t21 since −W = W>

R(α) = UWV>, R(−α) = UW>V> ⇒ T = R(−α)R>(α) = · · · = U diag(−1,−1, 1)U>
which is a rotation by 180◦ about u3 = t21:

U diag(−1,−1, 1)U>u3 = U

−1 0 0
0 −1 0
0 0 1

00
1

 = u3

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation
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IFour Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t21 = −b
and W rotates about the baseline b. →76

b C2C1
C1 C2

α, β −α, β (twisted by W)

C1
C2

C1
C2

α, −β (baseline reversal) −α, −β (combination of both)

• chirality constraint: all 3D points are in front of both cameras

• this singles-out the upper left case [H&Z, Sec. 9.6.3]
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I7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 correspondences, estimate f. m. F.

y>i Fxi = 0, i = 1, . . . , k, known: xi = (u1
i , v

1
i , 1), yi = (u2

i , v
2
i , 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:
y>i Fxi = (yix

>
i ) : F =

(
vec(yix

>
i )
)>

vec(F),

vec(F) =
[
f11 f21 f31 . . . f33

]>∈ R9
column vector from matrix

D =



(
vec(y1x

>
1 )
)>(

vec(y2x
>
2 )
)>(

vec(y3x
>
3 )
)>

...(
vec(ykx

>
k )
)>

 =


u1
1u

2
1 u1

1v
2
1 u1

1 u2
1v

1
1 v11v

2
1 v11 u2

1 v21 1
u1
2u

2
2 u1

2v
2
2 u1

2 u2
2v

1
2 v12v

2
2 v12 u2

2 v22 1
u1
3u

2
3 u1

3v
2
3 u1

3 u2
3v

1
3 v13v

2
3 v13 u2

3 v23 1
...

...
u1
ku

2
k u1

kv
2
k u1

k u2
kv

1
k v1kv

2
k v1k u2

k v2k 1

 ∈ Rk,9

D vec(F) = 0
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I7-Point Algorithm Continued

D vec(F) = 0, D ∈ Rk,9

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

• but we know that detF = 0, hence
1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for α from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices F = αiF1 + (1− αi)F2 (check rankF = 2)

• the result may depend on image (domain) transformations

• normalization improves conditioning →91

• this gives a good starting point for the full algorithm →107

• dealing with mismatches need not be a part of the 7-point algorithm →108
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IDegenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide t21 = 0: H = K2R21K−1

1

b) camera moves but all 3D points lie in a plane (n, d): H = K2(R21 − t21n>/d)K−1
1

• in both cases: epipolar geometry is not defined
• we do get a solution from the 7-point algorithm but it has the form of F = [s]×H

note that [s]×H ' H′[s′]× →75

l

s

y ≃ Hx
• given (arbitrary) s

• and correspondence x↔ y

• y is the image of x: y ' Hx

• a necessary condition: y ∈ l, l' s×Hx

0 = y>(s×Hx) = y>[s]×Hx for any x, s (!)

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes

• estimation of E can deal with planes: [s]×H is essential matrix iff s = λt21 (see Case 1.b)

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]

• a stronger epipolar constraint could reject some configurations
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A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint preserves orientations

• requires all points and cameras be on the same side of the plane at infinity"
b �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2 e2 ×m2 +∼ Fm1

notation: m +∼ n means m = λn, λ > 0

• we can read the constraint as e2 ×m2 +∼ H−>e (e1 ×m1)

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see →108 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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I5-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K,

recover the camera motion R, t.

Obs:
1. E – 8 numbers

2. R – 3DOF, t – 2DOF only, in total 5 DOF → we need 8− 5 = 3 constraints on E

3. E essential iff it has two equal singular values and the third is zero →80

This gives an equation system:

v>i Ev′i = 0 5 linear constraints (v ' K−1m)

detE = 0 1 cubic constraint

EE>E− 1

2
tr(EE>)E = 0 9 cubic constraints, 2 independent

~ P1; 1pt: verify this equation from E = UDV>, D = λ diag(1, 1, 0)

1. estimate E by SVD from v>i Ev′i = 0 by the null-space method 4D null space

2. this gives E = xE1 + yE2 + zE3 + E4

3. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views

or by chirality constraint (→82) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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Thank You
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