What Can We Do with An 'Uncalibrated’ Perspective Camera?

How far is the engine?
distance between sleepers (ties) 0.806 m but we cannot count them, image resolution is too low
We will review some life-saving theory...
\ldots. and build a bit of geometric intuition. . .

- Vanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line infinitely in one direction. the image of the point at infinity on the line

$$
\underline{\mathbf{m}}_{\infty} \simeq \lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots \simeq \mathbf{Q} \mathbf{d} \quad \begin{aligned}
& \circledast \text { P1; 1pt: Prove (use Cartesian } \\
& \text { coordinates and L'Hôpital's rule) }
\end{aligned}
$$

- the V.P. of a spatial line with directional vector \mathbf{d} is $\underline{\mathbf{m}}_{\infty} \simeq \mathbf{Q} \mathbf{d}$
- V.P. is independent on line position \mathbf{X}_{0}, it depends on its directional vector only
- all parallel lines share the same V.P., including the optical ray defined by m_{∞}

Some Vanishing Point "Applications"

where is the sun?

what is the wind direction?
(must have video)

fly above the lane, at constant altitude!

- Vanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane and in all parallel planes

- V.L. n corresponds to spatial plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$ because this is the normal vector of a parallel optical plane (!) $\rightarrow 38$ - a spatial plane of normal vector \mathbf{p} has a V.L. represented by $\quad \underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.

Cross Ratio

Four distinct collinear spatial points R, S, T, U define cross-ratio

$$
[R S T U]=\frac{|\overrightarrow{R T}|}{|\overrightarrow{S R}|} \frac{|\overrightarrow{U S}|}{|\overrightarrow{T U}|}
$$

a mnemonic (∞)
$|\overrightarrow{R T}|$ - distance from R to T in the arrow direction 6 cross-ratios from four points:

$$
[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]
$$

Obs: $\quad[R S T U]=\frac{|\underline{\mathbf{r}} \underline{\mathbf{t}} \underline{\mathbf{v}}|}{|\underline{\mathbf{s}} \underline{\mathbf{r}} \mathbf{v}|} \cdot \frac{|\underline{\mathbf{u}} \underline{\mathbf{s}} \quad \underline{\mathbf{v}}|}{|\underline{\mathbf{t}} \underline{\mathbf{u}} \quad \underline{\mathbf{v}}|}, \quad|\underline{\underline{\mathbf{r}}} \underline{\underline{\mathbf{t}}} \underline{\mathbf{v}}|=\operatorname{det}\left[\begin{array}{lll}\underline{\mathbf{r}} & \underline{\mathbf{t}} & \underline{\mathbf{v}}\end{array}\right]=(\underline{\underline{\mathbf{r}}} \times \underline{\mathbf{t}})^{\top} \underline{\mathbf{v}}$

Corollaries:

- cross ratio is invariant under homographies $\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}}$ plug $\mathbf{H} \underline{x}$ in (1): $\left(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{\mathbf{t}})\right)^{\top} \mathbf{H} \underline{\mathbf{v}}$
- cross ratio is invariant under perspective projection: $[R S T U]=[r s t u]$
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points R, S, T, U may be at infinity (we take the limit, in effect $\frac{\infty}{\infty}=1$)

1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:
$[P]=\left[P_{0} P_{1} P P_{\infty}\right]=\left[p_{0} p_{1} p p_{\infty}\right]=\frac{\left|\overrightarrow{p_{0} p}\right|}{\left|\overrightarrow{p_{1} p_{0}}\right|} \frac{\left|\overrightarrow{p_{\infty} p_{1}}\right|}{\left|\overrightarrow{p p_{\infty}}\right|}=[p]$

naming convention:

$$
\begin{aligned}
P_{0}-\text { the origin } & {\left[P_{0}\right] } & =0 \\
P_{1}-\text { the unit point } & {\left[P_{1}\right] } & =1 \\
P_{\infty}-\text { the supporting point } & {\left[P_{\infty}\right] } & = \pm \infty
\end{aligned}
$$

$[P]$ is equal to Euclidean coordinate along N
$[p]$ is its measurement in the image plane

Applications

- Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined
- Finding v.p. of a line through a regular object

Application：Counting Steps

－Namesti Miru underground station in Prague

detail around the vanishing point

Result：$[P]=214$ steps（correct answer is 216 steps）
4Mpx camera

Application：Finding the Horizon from Repetitions

in 3D：$\left|P_{0} P\right|=2\left|P_{0} P_{1}\right|$ then
［H\＆Z，p．218］

$$
\left[P_{0} P_{1} P P_{\infty}\right]=\frac{\left|P_{0} P\right|}{\left|P_{1} P_{0}\right|}=2 \quad \Rightarrow \quad x_{\infty}=\frac{x_{0}\left(2 x-x_{1}\right)-x x_{1}}{x+x_{0}-2 x_{1}}
$$

－$x-1 \mathrm{D}$ coordinate along the yellow line，positive in the arrow direction
－could be applied to counting steps $(\rightarrow 47)$ if there was no supporting line
$\circledast \mathrm{P} 1 ; 1$ pt：How high is the camera above the floor？

Homework Problem

$\circledast \mathrm{H} 2$; 3pt: What is the ratio of heights of Building A to Building B ?

- expected: conceptual solution; use notation from this figure
- deadline: LD+2 weeks

Hints

1. What are the interesting properties of line h connecting the top t_{B} of Buiding B with the point m at which the horizon intersects the line p joining the foots f_{A}, f_{B} of both buildings? [1 point]
2. How do we actually get the horizon n_{∞} ? (we do not see it directly, there are some hills there...) [1 point]
3. Give the formula for measuring the length ratio. [formula $=1$ point]

2D Projective Coordinates

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration
because we can see the calibrating object (vanishing points)

Module III

Computing with a Single Camera

(32) Calibration: Internal Camera Parameters from Vanishing Points and Lines
(32) Camera Resection: Projection Matrix from 6 Known Points
(33Exterior Orientation: Camera Rotation and Translation from 3 Known Points
covered by
[1] [H\&Z] Secs: 8.6, 7.1, 22.1
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981
[3] [Golub \& van Loan 2013, Sec. 2.5]

Obtaining Vanishing Points and Lines

- orthogonal direction pairs can be collected from more images by camera rotation

- vanishing line can be obtained without vanishing points $(\rightarrow 48)$

Camera Calibration from Vanishing Points and Lines

Problem：Given finite vanishing points and／or vanishing lines，compute K

$$
\begin{array}{rrr}
\mathbf{d}_{i} & \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_{i}, & i=1,2,3 \\
\mathbf{p}_{i j} & \simeq \mathbf{Q}^{\top} \underline{\mathbf{n}}_{i j}, & i, j 2 \tag{2}\\
\end{array}
$$

－simple method：solve（2）after eliminating nuisance pars．

Special Configurations

1．orthogonal rays $\mathbf{d}_{1} \perp \mathbf{d}_{2}$ in space then

$$
\begin{aligned}
& 0=\mathbf{d}_{1}^{\top} \mathbf{d}_{2}=\underline{\mathbf{v}}_{1}^{\top} \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{2}=\underline{\mathbf{v}}_{1}^{\top} \underbrace{\left(\mathbf{K} \mathbf{K}^{\top}\right)^{-1}}_{\boldsymbol{\omega}(\mathrm{IAC})} \underline{\mathbf{v}}_{2} \\
& \text { orthogonal planes } \mathbf{p}_{i j} \perp \mathbf{p}_{i k} \text { in space }
\end{aligned}
$$

$$
0=\mathbf{p}_{i j}^{\top} \mathbf{p}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \mathbf{Q Q}^{\top} \underline{\mathbf{n}}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{i k}
$$

3．orthogonal ray and plane $\mathbf{d}_{k} \| \mathbf{p}_{i j}, k \neq i, j$ normal parallel to optical ray

$$
\mathbf{p}_{i j} \simeq \mathbf{d}_{k} \quad \Rightarrow \quad \mathbf{Q}^{\top} \underline{\mathbf{n}}_{i j}=\lambda \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k} \quad \Rightarrow \quad \underline{\mathbf{n}}_{i j}=\lambda \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k}=\lambda \boldsymbol{\omega} \underline{\mathbf{v}}_{k}, \quad \lambda \neq 0
$$

－$n_{i j}$ may be constructed from non－orthogonal v_{i} and v_{j} ，e．g．using the cross－ratio
－ $\boldsymbol{\omega}$ is a symmetric，positive definite 3×3 matrix
IAC＝Image of Absolute Conic

$>$ cont'd

(3) orthogonal v.p.
(4) orthogonal v.l.
(5) v.p. orthogonal to v.l.
(6) orthogonal raster $\theta=\pi / 2$
(7) unit aspect $a=1$ when $\theta=\pi / 2$
(8) known principal point $u_{0}=v_{0}=0 \quad \omega_{13}=\omega_{31}=\omega_{23}=\omega_{32}=0 \quad 2$

- these are homogeneous linear equations for the 5 parameters in ω in the form $\mathbf{D w}=\mathbf{0}$
λ can be eliminated from (5)
- we need at least 5 constraints for full $\boldsymbol{\omega}$ symmetric 3×3
- we get K from $\boldsymbol{\omega}^{-1}=\mathbf{K K}^{\top}$ by Choleski decomposition the decomposition returns a positive definite upper triangular matrix one avoids solving an explicit set of quadratic equations for the parameters in \mathbf{K}
- unlike in the naive method (2), we can introduce constraints on \mathbf{K}, e.g. (6)-(8)

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta=\pi / 2, a=1$

$$
\boldsymbol{\omega} \simeq\left[\begin{array}{ccc}
1 & 0 & -u_{0} \\
0 & 1 & -v_{0} \\
-u_{0} & -v_{0} & f^{2}+u_{0}^{2}+v_{0}^{2}
\end{array}\right]
$$

Ex 1:

Assuming ORUA and known $m_{0}=\left(u_{0}, v_{0}\right)$, two finite orthogonal vanishing points give f

$$
\underline{\mathbf{v}}_{1}^{\top} \omega \underline{\mathbf{v}}_{2}=0 \quad \Rightarrow \quad f^{2}=\left|\left(\mathbf{v}_{1}-\mathbf{m}_{0}\right)^{\top}\left(\mathbf{v}_{2}-\mathbf{m}_{0}\right)\right|
$$

in this formula, $\mathbf{v}_{i}, \mathbf{m}_{0}$ are Cartesian (not homogeneous)!
Ex 2:
Non-orthogonal vanishing points $\mathbf{v}_{i}, \mathbf{v}_{j}$, known angle $\phi: \cos \phi=\frac{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{j}}{\sqrt{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{i}} \sqrt{\underline{\mathbf{v}}_{j}^{\top} \omega \underline{\mathbf{v}}_{j}}}$

- leads to polynomial equations
- e.g. ORUA and $u_{0}=v_{0}=0$ gives

$$
\left(f^{2}+\mathbf{v}_{i}^{\top} \mathbf{v}_{j}\right)^{2}=\left(f^{2}+\left\|\mathbf{v}_{i}\right\|^{2}\right) \cdot\left(f^{2}+\left\|\mathbf{v}_{j}\right\|^{2}\right) \cdot \cos ^{2} \phi
$$

Image of Absolute Conic

This is the \mathbf{K} matrix：

$$
K=\left\{\left\{\mathbf{f}, \mathbf{s}, \mathbf{u}_{0}\right\},\left\{0, \mathbf{a} * \mathbf{f}, \mathbf{v}_{0}\right\},\{0,0, \mathbf{1}\}\right\}
$$

$$
\left(\begin{array}{ccc}
f & s & u_{0} \\
0 & a f & v_{0} \\
0 & 0 & 1
\end{array}\right)
$$

The ω matrix：

$$
\begin{aligned}
& \omega=\text { Inverse[K.Transpose[K]]*Det[K]^2 // Simplify } \\
& \left(\begin{array}{ccc}
a^{2} f^{2} & -a f s & a f\left(s v_{0}-a f u_{0}\right) \\
-a f s & f^{2}+s^{2} & a f s u_{0}-\left(f^{2}+s^{2}\right) v_{0} \\
a f\left(s v_{0}-a f u_{0}\right) & a f s u_{0}-\left(f^{2}+s^{2}\right) v_{0} & a^{2} f^{4}+a^{2} u_{0}^{2} f^{2}-2 a s u_{0} v_{0} f+\left(f^{2}+s^{2}\right) v_{0}^{2}
\end{array}\right)
\end{aligned}
$$

The ω matrix with no skew：

$$
\omega / f^{\wedge} 2 / . s \rightarrow 0 / / \text { Simplify // MatrixForm }
$$

$$
\left(\begin{array}{ccc}
a^{2} & 0 & -a^{2} u_{0} \\
0 & 1 & -v_{0} \\
-a^{2} u_{0} & -v_{0} & a^{2} f^{2}+a^{2} u_{0}^{2}+v_{0}^{2}
\end{array}\right)
$$

ORUA

```
\omega/f^2 /. {a -> 1, s -> 0} // Simplify
```

$$
\left(\begin{array}{ccc}
1 & 0 & -u_{0} \\
0 & 1 & -v_{0} \\
-u_{0} & -v_{0} & f^{2}+u_{0}^{2}+v_{0}^{2}
\end{array}\right)
$$

－Camera Orientation from Two Finite Vanishing Points

Problem：Given \mathbf{K} and two vanishing points corresponding to two known orthogonal directions $\mathbf{d}_{1}, \mathbf{d}_{2}$ ，compute camera orientation \mathbf{R} with respect to the plane．
－3D coordinate system choice，e．g．：

$$
\mathbf{d}_{1}=(1,0,0), \quad \mathbf{d}_{2}=(0,1,0)
$$

－we know that

$$
\mathbf{d}_{i} \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_{i}=(\mathbf{K R})^{-1} \underline{\mathbf{v}}_{i}=\mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_{i}}_{\underline{\mathbf{w}}_{i}}
$$

$$
\mathbf{R d}_{i} \simeq \underline{\mathbf{w}}_{i}
$$

－knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_{i} /\left\|\underline{\mathbf{w}}_{i}\right\|$
 is the i－th column \mathbf{r}_{i} of \mathbf{R}
some suitable scenes
－the third column is orthogonal：

$$
\begin{aligned}
& \mathbf{r}_{3} \simeq \mathbf{r}_{1} \times \mathbf{r}_{2} \\
& \mathbf{R}=\left[\begin{array}{lll}
\frac{\mathbf{w}_{1}}{\left\|\underline{\mathbf{w}}_{1}\right\|} & \frac{\mathbf{w}_{2}}{\left\|\underline{\mathbf{w}}_{2}\right\|} & \frac{\mathbf{w}_{1} \times \mathbf{w}_{2}}{\left\|\underline{\mathbf{w}}_{1} \times \underline{\mathbf{w}}_{2}\right\|}
\end{array}\right]
\end{aligned}
$$

Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

$$
\begin{aligned}
\underline{\mathbf{m}} \simeq \mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \underline{\mathbf{X}} \quad \underline{\mathbf{m}}^{\prime} \simeq \mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \underline{\mathbf{X}} \\
\underline{\mathbf{m}}^{\prime} \simeq \mathbf{K}(\mathbf{K R})^{-1} \underline{\mathbf{m}}=\mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1} \underline{\mathbf{m}}=\mathbf{H} \underline{\mathbf{m}}
\end{aligned}
$$

- \mathbf{H} is the rectifying homography
- both \mathbf{K} and \mathbf{R} can be calibrated from two finite vanishing points assuming ORUA $\rightarrow 56$
- not possible when one (or both) of them are infinite
- without ORUA we would need 4 additional views to calibrate \mathbf{K} as on $\rightarrow 53$

－Camera Resection

Camera calibration and orientation from a known set of $k \geq 6$ reference points and their images $\left.\left\{\overline{(X},, m_{i}\right)\right\}_{i=1}^{6}$ ．

－X_{i} are considered exact
－m_{i} is a measurement subject to detection error

$$
\mathbf{m}_{i}=\hat{\mathbf{m}}_{i}+\mathbf{e}_{i} \quad \text { Cartesian }
$$

－where $\underline{\hat{\mathbf{m}}}_{i} \simeq \mathbf{P} \underline{\mathbf{X}}_{i}$

Resection Targets

calibration chart

resection target with translation stage

automatic calibration point detection
－target translated at least once
－by a calibrated（known）translation
－X_{i} point locations looked up in a table based on their code

-The Minimal Problem for Camera Resection

Problem: Given $k=6$ corresponding pairs $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{k}$, find \mathbf{P}

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{P} \underline{\mathbf{X}}_{i}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right] \quad \begin{aligned}
& \underline{\mathbf{X}}_{i}=\left(x_{i}, y_{i}, z_{i}, 1\right), \quad i=1,2, \ldots, k, k=6 \\
& \\
& \\
& \text { easy to modify for infinite points } X_{i} \text { but be aware of } \rightarrow 64
\end{aligned}
$$

expanded:

$$
\lambda_{i} u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad \lambda_{i} v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}, \quad \lambda_{i}=\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}
$$

after elimination of $\lambda_{i}: \quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}$
Then

$$
\mathbf{A} \mathbf{q}=\left[\begin{array}{cccccc}
\mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1} \mathbf{X}_{1}^{\top} & -u_{1} \tag{9}\\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1} \mathbf{X}_{1}^{\top} & -v_{1} \\
\vdots & & & & & \vdots \\
\mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k} \mathbf{X}_{k}^{\top} & -u_{k} \\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k} \mathbf{X}_{k}^{\top} & -v_{k}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{q}_{1} \\
q_{14} \\
\mathbf{q}_{2} \\
q_{24} \\
\mathbf{q}_{3} \\
q_{34}
\end{array}\right]=\mathbf{0}
$$

- we need 11 indepedent parameters for \mathbf{P}
- $\mathbf{A} \in \mathbb{R}^{2 k, 12}, \mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give rank $\mathbf{A}=12$ and there is no non-trivial null space
- drop one row to get rank 11 matrix, then the basis vector of the null space of \mathbf{A} gives q

- The Jack-Knife Solution for $k=6$

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

1. $n:=0$
2. for $i=1,2, \ldots, 2 k$ do
a) delete i-th row from \mathbf{A}, this gives \mathbf{A}_{i}
b) if dim null $\mathbf{A}_{i}>1$ continue with the next i

c) $n:=n+1$
d) compute the right null-space \mathbf{q}_{i} of $\mathbf{A}_{i} \quad$ e.g. by 'economy-size' SVD
e) $\hat{\mathbf{q}}_{i}:=\mathbf{q}_{i}$ normalized to $q_{34}=1$ and dimension-reduced assuming finite cam. with $P_{3,4}=1$
3. from all n vectors $\hat{\mathbf{q}}_{i}$ collected in Step 1d compute

$$
\mathbf{q}=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_{i}, \quad \operatorname{var}[\mathbf{q}]=\frac{n-1}{n} \operatorname{diag} \sum_{i-1}^{n}\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)^{\top} \quad \text { regular for } n \geq 11
$$

- have a solution + an error estimate, per individual elements of \mathbf{P} (except P_{34})
- at least 5 points must be in a general position $(\rightarrow 64)$
- large error indicates near degeneracy
- computation not efficient with $k>6$ points, needs $\binom{2 k}{11}$ draws, e.g. $k=7 \Rightarrow 364$ draws
- better error estimation method: decompose \mathbf{P}_{i} to $\mathbf{K}_{i}, \mathbf{R}_{i}, \mathbf{t}_{i}(\rightarrow 32)$, represent \mathbf{R}_{i} with 3 parameters (e.g. Euler angles, or in Cayley representation $\rightarrow 139$) and compute the errors for the parameters

-Degenerate (Critical) Configurations for Camera Resection

Let $\mathcal{X}=\left\{X_{i} ; i=1, \ldots\right\}$ be a set of points and $\mathbf{P}_{1} \not \not \mathbf{P}_{j}$ be two regular (rank-3) cameras. Then two configurations $\left(\mathbf{P}_{1}, \mathcal{X}\right)$ and $\left(\mathbf{P}_{j}, \mathcal{X}\right)$ are image-equivalent if

$$
\mathbf{P}_{1} \underline{\mathbf{X}}_{i} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i} \quad \text { for all } \quad X_{i} \in \mathcal{X}
$$

there is a non-trivial set of other cameras that see the same image

Case 4

- importantly: If all calibration points $X_{i} \in \mathcal{X}$ lie on a plane \varkappa then camera resection is non-unique and all image-equivalent camera centers lie on a spatial line \mathcal{C} with the $C_{\infty}=\varkappa \cap \mathcal{C}$ excluded
this also means we cannot resect if all X_{i} are infinite
- by adding points $X_{i} \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next
proof sketch in [H\&Z, Sec. 22.1.2]

Note that if \mathbf{Q}, \mathbf{T} are suitable homographies then $\mathbf{P}_{1} \simeq \mathbf{Q P} \mathbf{P}_{0} \mathbf{T}$, where \mathbf{P}_{0} is canonical and the analysis can be made with $\hat{\mathbf{P}}_{j} \simeq \mathbf{Q}^{-1} \mathbf{P}_{j}$

$$
\mathbf{P}_{0} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \simeq \hat{\mathbf{P}}_{j} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \text { for all } \quad Y_{i} \in \mathcal{Y}
$$

cont＇d（all cases）

－cameras C_{1}, C_{2} co－located at point \mathcal{C}
－points on three optical rays or one optical ray and one optical plane
－Case 5：camera sees 3 isolated point images
－Case 6：cam．sees a line of points and an isolated point
－cameras lie on a line $\mathcal{C} \backslash\left\{C_{\infty}, C_{\infty}^{\prime}\right\}$
－points lie on \mathcal{C} and
1．on two lines meeting \mathcal{C} at $C_{\infty}, C_{\infty}^{\prime}$
2．or on a plane meeting \mathcal{C} at C_{∞}
－Case 3：camera sees 2 lines of points

Case 3

Case 2

－cameras lie on a planar conic $\mathcal{C} \backslash\left\{C_{\infty}\right\}$
not necessarily an ellipse
－points lie on \mathcal{C} and an additional line meeting the conic at C_{∞}
－Case 2：camera sees 2 lines of points

Case 1

－cameras and points all lie on a twisted cubic \mathcal{C}
－Case 1：camera sees a conic

- Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of $\underline{3}$ reference $\underline{\text { Points. }}$ Problem: Given \mathbf{K} and three corresponding pairs $\left\{\left(m_{i}, X_{i}\right)\right\}_{i=1}^{3}$, find \mathbf{R}, \mathbf{C} by solving

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{K R}\left(\mathbf{X}_{i}-\mathbf{C}\right), \quad i=1,2,3
$$

1. Transform $\underline{\mathbf{v}}_{i} \stackrel{\text { def }}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_{i}$. Then
configuration w/o rotation in (11)

$$
\begin{equation*}
\lambda_{i} \underline{\mathbf{v}}_{i}=\mathbf{R}\left(\mathbf{X}_{i}-\mathbf{C}\right) . \tag{10}
\end{equation*}
$$

2. Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R x}\|=\|\mathbf{x}\|$

$$
\begin{equation*}
\left|\lambda_{i}\right| \cdot\left\|\underline{\mathbf{v}}_{i}\right\|=\left\|\mathbf{X}_{i}-\mathbf{C}\right\| \stackrel{\text { def }}{=} z_{i} \tag{11}
\end{equation*}
$$

3. Consider only angles among $\underline{\mathbf{v}}_{i}$ and apply Cosine Law per triangle $\left(\mathbf{C}, \mathbf{X}_{i}, \mathbf{X}_{j}\right) i, j=1,2,3, i \neq j$

$$
\begin{gathered}
d_{i j}^{2}=z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j} c_{i j} \\
z_{i}=\left\|\mathbf{X}_{i}-\mathbf{C}\right\|, \quad d_{i j}=\left\|\mathbf{X}_{j}-\mathbf{X}_{i}\right\|, \quad c_{i j}=\cos \left(\angle \underline{\mathbf{v}}_{i} \underline{\mathbf{v}}_{j}\right)
\end{gathered}
$$

4. Solve system of 3 quadratic eqs in 3 unknowns z_{i}
 there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)
5. Compute \mathbf{C} by trilateration (3-sphere intersection) from \mathbf{X}_{i} and z_{i}; then λ_{i} from (11) and \mathbf{R} from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}
unstable: a small change of X_{i} results in a large change of C can be detected by error propagation
degenerate
- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right)$ camera sees a line

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$

- additional critical configurations depend on the method to solve the quadratic equations

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	62
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	66

- camera resection and exterior orientation are similar problems in a sense:
- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- more problems to come

Thank You

