
What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine?

distance between sleepers (ties) 0.806m but we cannot count them, image resolution is too low

We will review some life-saving theory. . .
. . . and build a bit of geometric intuition. . .
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IVanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line
infinitely in one direction. the image of the point at infinity on the line

X0X0 + �d d Cd m m1
�

m∞ ' lim
λ→±∞

P

[
X0 + λd

1

]
= · · · ' Qd

~ P1; 1pt: Prove (use Cartesian

coordinates and L’Hôpital’s rule)

• the V.P. of a spatial line with directional vector d is m∞ ' Qd

• V.P. is independent on line position X0, it depends on its directional vector only

• all parallel lines share the same V.P., including the optical ray defined by m∞
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Some Vanishing Point “Applications”

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!
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IVanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane

and in all parallel planesv1 n | plane normal

m | line orientation vetor
v2

• V.L. n corresponds to spatial plane of normal vector p = Q>n
because this is the normal vector of a parallel optical plane (!) →38

• a spatial plane of normal vector p has a V.L. represented by n= Q−>p.
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ICross Ratio

Four distinct collinear spatial points R,S, T, U define cross-ratio
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a mnemonic (∞)

|
−→
RT | – distance from R to T in the arrow direction

6 cross-ratios from four points:

[SRUT ] = [RSTU], [RSUT ] =
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Obs: [RSTU ] =

∣∣r t v
∣∣∣∣s r v
∣∣ ·
∣∣u s v

∣∣∣∣t u v
∣∣ , ∣∣r t v

∣∣ = det
[
r t v

]
= (r× t)>v (1)

Corollaries:
• cross ratio is invariant under homographies x′ ' Hx plug Hx in (1): (H−>(r× t))>Hv

• cross ratio is invariant under perspective projection: [RSTU ] = [ r s t u ]

• 4 collinear points: any perspective camera will “see” the same cross-ratio of their images

• we measure the same cross-ratio in image as on the world line

• one of the points R, S, T , U may be at infinity (we take the limit, in effect ∞∞ = 1)
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I1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P ] = [P0 P1 P P∞] = [p0 p1 p p∞] =
|−−→p0 p|
|−−→p1 p0|

|−−−→p∞ p1|
|−−→p p∞|

= [p]

naming convention:

P0 – the origin [P0] = 0

P1 – the unit point [P1] = 1

P∞ – the supporting point [P∞] = ±∞

[P ] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

p∞p0 p1 p

p0

p1

p∞

n′n

p

N ′‖N in 3D

Applications

• Given the image of a 3D line N , the origin, the unit point, and the vanishing point,
then the Euclidean coordinate of any point P ∈ N can be determined →47

• Finding v.p. of a line through a regular object →48

3D Computer Vision: II. Perspective Camera (p. 46/189) R. Šára, CMP; rev. 16–Oct–2018



Application: Counting Steps
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• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P ] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitions

p

p∞

p0

p1

P1

P

P0

in 3D: |P0P | = 2|P0P1| then [H&Z, p. 218]

[P0P1PP∞] =
|P0P |
|P1P0|

= 2 ⇒ x∞ =
x0 (2x− x1)− xx1

x+ x0 − 2x1

• x – 1D coordinate along the yellow line, positive in the arrow direction

• could be applied to counting steps (→47) if there was no supporting line

~ P1; 1pt: How high is the camera above the floor?
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Homework Problem

~ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution; use notation from this figure
• deadline: LD+2 weeks

B
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tA

u

z

p

h

n∞

fB

tB
m

fA

Hints

1. What are the interesting properties of line h connecting the top tB of Buiding B with the point m at
which the horizon intersects the line p joining the foots fA, fB of both buildings? [1 point]

2. How do we actually get the horizon n∞? (we do not see it directly, there are some hills there. . . ) [1 point]

3. Give the formula for measuring the length ratio. [formula = 1 point]
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2D Projective Coordinates

V.P.

locate on the plane
pt we want to

origin in 3D

y-coordinate axis in 3D

unit pt

x-coordinate axis in 3D unit pt

V.P.

p0 px1 px px∞

p1

p

py∞

py

py1

[Px] = [P0 Px1 Px Px∞] [Py] = [P0 Py1 Py Py∞]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units

• what are the dimensions of the seal? Is it circular (assuming square tiles)?

• needs no explicit camera calibration
because we can see the calibrating object (vanishing points)
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Module III

Computing with a Single Camera

3.1 Calibration: Internal Camera Parameters from Vanishing Points and Lines

3.2 Camera Resection: Projection Matrix from 6 Known Points

3.3 Exterior Orientation: Camera Rotation and Translation from 3 Known Points

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

[3] [Golub & van Loan 2013, Sec. 2.5]

3D Computer Vision: III. Computing with a Single Camera (p. 52/189) R. Šára, CMP; rev. 16–Oct–2018



Obtaining Vanishing Points and Lines

• orthogonal direction pairs can be collected from more images by camera rotation

• vanishing line can be obtained without vanishing points (→48)
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ICamera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d3n31 n12d1d2
v3 n23 v2

v1

di ' Q−1vi, i = 1, 2, 3 →42

pij ' Q>nij , i, j = 1, 2, 3, i 6= j →38
(2)

• simple method: solve (2) after eliminating nuisance pars.

Special Configurations

1. orthogonal rays d1 ⊥ d2 in space then

0 = d>1 d2 = v>1 Q
−>Q−1v2 = v>1 (KK>)−1︸ ︷︷ ︸

ω (IAC)

v2

2. orthogonal planes pij ⊥ pik in space

0 = p>ijpik = n>ij QQ>nik = n>ij ω
−1nik

3. orthogonal ray and plane dk ‖ pij , k 6= i, j normal parallel to optical ray

pij ' dk ⇒ Q>nij = λQ−1vk ⇒ nij = λQ−>Q−1vk = λω vk, λ 6= 0

• nij may be constructed from non-orthogonal vi and vj , e.g. using the cross-ratio

• ω is a symmetric, positive definite 3× 3 matrix IAC = Image of Absolute Conic
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Icont’d

configuration equation # constraints

(3) orthogonal v.p. v>i ω vj = 0 1

(4) orthogonal v.l. n>ij ω
−1nik = 0 1

(5) v.p. orthogonal to v.l. nij = λω vk 2

(6) orthogonal raster θ = π/2 ω12 = ω21 = 0 1

(7) unit aspect a = 1 when θ = π/2 ω11 − ω22 = 0 1

(8) known principal point u0 = v0 = 0 ω13 = ω31 = ω23 = ω32 = 0 2

• these are homogeneous linear equations for the 5 parameters in ω in the form Dw = 0
λ can be eliminated from (5)

• we need at least 5 constraints for full ω symmetric 3× 3

• we get K from ω−1 = KK> by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix

one avoids solving an explicit set of quadratic equations for the parameters in K

• unlike in the naive method (2), we can introduce constraints on K, e.g. (6)–(8)
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Examples

Assuming orthogonal raster, unit aspect (ORUA): θ = π/2, a = 1

ω '

 1 0 −u0

0 1 −v0
−u0 −v0 f2 + u2

0 + v20


Ex 1:
Assuming ORUA and known m0 = (u0, v0), two finite orthogonal vanishing points give f

v>1 ω v2 = 0 ⇒ f2 =
∣∣(v1 −m0)

>(v2 −m0)
∣∣

in this formula, vi, m0 are Cartesian (not homogeneous)!

Ex 2:

Non-orthogonal vanishing points vi, vj , known angle φ: cosφ =
v>i ωvj√

v>i ωvi
√

v>j ωvj

• leads to polynomial equations

• e.g. ORUA and u0 = v0 = 0 gives

(f2 + v>i vj)
2 = (f2 + ‖vi‖2) · (f2 + ‖vj‖2) · cos2 φ
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Image of Absolute Conic

This is the K matrix:

K = {{f, s, u0}, {0, a * f, v0}, {0, 0, 1}}

f s u0

0 a f v0

0 0 1

The ω matrix:

ω = Inverse[K.Transpose[K]] * Det[K]^2 // Simplify

a2 f 2 -a f s a f (s v0 - a f u0)

-a f s f 2 + s2 a f s u0 - ( f 2 + s2) v0

a f (s v0 - a f u0) a f s u0 - ( f 2 + s2) v0 a2 f 4 + a2 u0
2 f 2 - 2 a s u0 v0 f + ( f 2 + s2) v0

2

The ω matrix with no skew:

ω / f^2 /. s -> 0 // Simplify // MatrixForm

a2 0 -a2 u0

0 1 -v0

-a2 u0 -v0 a2 f 2 + a2 u0
2 + v0

2

ORUA

ω / f^2 /. {a -> 1, s -> 0} // Simplify

1 0 -u0

0 1 -v0

-u0 -v0 f 2 + u0
2 + v0

2
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ICamera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal
directions d1, d2, compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

d1 = (1, 0, 0), d2 = (0, 1, 0)

• we know that

di ' Q−1vi = (KR)−1vi = R−1 K−1vi︸ ︷︷ ︸
wi

Rdi ' wi

• knowing d1,2 we conclude that wi/‖wi‖
is the i-th column ri of R

• the third column is orthogonal:
r3 ' r1 × r2

R =
[

w1
‖w1‖

w2
‖w2‖

w1×w2
‖w1×w2‖

]

.

v2
d2 d1 v1

some suitable scenes
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Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

m' KR
[
I −C

]
X m′ ' K

[
I −C

]
X

m′ ' K(KR)−1 m= KR>K−1 m= Hm

• H is the rectifying homography

• both K and R can be calibrated from two finite vanishing points assuming ORUA →56

• not possible when one (or both) of them are infinite

• without ORUA we would need 4 additional views to calibrate K as on →53
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ICamera Resection

Camera calibration and orientation from a known set of k ≥ 6 reference points and their
images {(Xi,mi)}6i=1.

P

m̂i

mi

ei

Xi

• Xi are considered exact

• mi is a measurement subject to
detection error

mi = m̂i + ei Cartesian

• where m̂i ' PXi
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Resection Targets
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calibration chart automatic calibration point detection

z

• target translated at least once

• by a calibrated (known) translation

• Xi point locations looked up in a table
based on their code

resection target with translation stage
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IThe Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs
{
(Xi, mi)

}k
i=1

, find P

λimi = PXi, P =

 q>1 q14
q>2 q24
q>3 q34

 Xi = (xi, yi, zi, 1), i = 1, 2, . . . , k, k = 6

mi = (ui, vi, 1), λi ∈ R, λi 6= 0

easy to modify for infinite points Xi but be aware of →64

expanded: λiui = q>1 Xi + q14, λivi = q>2 Xi + q24, λi = q>3 Xi + q34

after elimination of λi: (q>3 Xi + q34)ui = q>1 Xi + q14, (q>3 Xi + q34)vi = q>2 Xi + q24

Then

Aq =


X>1 1 0> 0 −u1X

>
1 −u1

0> 0 X>1 1 −v1X>1 −v1
...

...
X>k 1 0> 0 −ukX>k −uk
0> 0 X>k 1 −vkX>k −vk

·


q1

q14
q2

q24
q3

q34

 = 0 (9)

• we need 11 indepedent parameters for P

• A ∈ R2k,12, q ∈ R12

• 6 points in a general position give rankA = 12 and there is no non-trivial null space

• drop one row to get rank 11 matrix, then the basis vector of the null space of A gives q
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IThe Jack-Knife Solution for k = 6

• given the 6 correspondences, we have 12 equations for the 11 parameters
• can we use all the information present in the 6 points?

Jack-knife estimation

1. n := 0

2. for i = 1, 2, . . . , 2k do
a) delete i-th row from A, this gives Ai

b) if dimnullAi > 1 continue with the next i
c) n := n+ 1
d) compute the right null-space qi of Ai e.g. by ‘economy-size’ SVD

e) q̂i:= qi normalized to q34 = 1 and dimension-reduced assuming finite cam. with P3,4 = 1

3. from all n vectors q̂i collected in Step 1d compute

q =
1

n

n∑
i=1

q̂i, var[q] =
n− 1

n
diag

n∑
i−1

(q̂i − q)(q̂i − q)> regular for n ≥ 11

• have a solution + an error estimate, per individual elements of P (except P34)

• at least 5 points must be in a general position (→64)

• large error indicates near degeneracy

• computation not efficient with k > 6 points, needs
(2k
11

)
draws, e.g. k = 7⇒ 364 draws

• better error estimation method: decompose Pi to Ki, Ri, ti (→32), represent Ri with 3 parameters
(e.g. Euler angles, or in Cayley representation →139) and compute the errors for the parameters
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IDegenerate (Critical) Configurations for Camera Resection

Let X = {Xi; i = 1, . . .} be a set of points and P1 6' Pj be two regular (rank-3) cameras.
Then two configurations (P1,X ) and (Pj ,X ) are image-equivalent if

P1Xi ' PjXi for all Xi ∈ X
there is a non-trivial set of other cameras that see the same image{C1C2C1C

Case 4

• importantly: If all calibration points Xi ∈ X lie on a plane
κ then camera resection is non-unique and all
image-equivalent camera centers lie on a spatial line C
with the C∞ = κ ∩ C excluded

this also means we cannot resect if all Xi are infinite

• by adding points Xi ∈ X to C we gain nothing

• there are additional image-equivalent configurations, see
next

proof sketch in [H&Z, Sec. 22.1.2]

Note that if Q, T are suitable homographies then P1 ' QP0T, where P0 is canonical and the

analysis can be made with P̂j ' Q−1Pj

P0 TXi︸ ︷︷ ︸
Yi

' P̂j TXi︸ ︷︷ ︸
Yi

for all Yi ∈ Y
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cont’d (all cases)C C
Case 5 Case 6

• cameras C1, C2 co-located at point C
• points on three optical rays or one optical ray

and one optical plane

• Case 5: camera sees 3 isolated point images

• Case 6: cam. sees a line of points and an isolated pointC C1
C 01C1C2 {C1C2C1C

Case 3 Case 4

• cameras lie on a line C \ {C∞, C′∞}
• points lie on C and

1. on two lines meeting C at C∞, C′∞
2. or on a plane meeting C at C∞

• Case 3: camera sees 2 lines of points

Case 2

CC2
C1C1 • cameras lie on a planar conic C \ {C∞}

not necessarily an ellipse

• points lie on C and an additional line meeting the
conic at C∞

• Case 2: camera sees 2 lines of points

Case 1 CC1 C2 • cameras and points all lie on a twisted cubic C

• Case 1: camera sees a conic
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IThree-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{
(mi, Xi)

}3
i=1

, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (10)

2. Eliminate R by taking rotation preserves length: ‖Rx‖ = ‖x‖

|λi| · ‖vi‖ = ‖Xi −C‖ def
= zi (11)

3. Consider only angles among vi and apply Cosine Law per
triangle (C,Xi,Xj) i, j = 1, 2, 3, i 6= j

d2ij = z2i + z2j − 2 zi zj cij ,

zi = ‖Xi −C‖, dij = ‖Xj −Xi‖, cij = cos(∠vi vj)

configuration w/o rotation in (11)

X3X1 v2
X2z1 v1 v3z2

C
d12

4. Solve system of 3 quadratic eqs in 3 unknowns zi [Fischler & Bolles, 1981]

there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi and zi; then λi from (11) and R
from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)
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http://cmp.felk.cvut.cz/minimal/


Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular
cylinder with base circumscribing the three points Xi

unstable: a small change of Xi results in a large change of C
can be detected by error propagation

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3) camera sees a

lineX1X3 X2C no solution

1. C cocyclic with (X1, X2, X3) camera sees a line

• additional critical configurations depend on the method to solve the quadratic
equations

[Haralick et al. IJCV 1994]
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IPopulating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

camera resection 6 world–img correspondences
{
(Xi, mi)

}6
i=1

P 62

exterior orientation K, 3 world–img correspondences
{
(Xi, mi)

}3
i=1

R, C 66

• camera resection and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• more problems to come
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Thank You
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