- The Triangulation Problem

Problem: Given cameras $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a correspondence $x \leftrightarrow y$ compute a 3D point \mathbf{X} projecting to x and y

$$
\lambda_{1} \underline{\mathbf{x}}=\mathbf{P}_{1} \underline{\mathbf{X}}, \quad \lambda_{2} \underline{\mathbf{y}}=\mathbf{P}_{2} \underline{\mathbf{X}}, \quad \underline{\mathbf{x}}=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
1
\end{array}\right], \quad \underline{\mathbf{y}}=\left[\begin{array}{c}
u^{2} \\
v^{2} \\
1
\end{array}\right], \quad \mathbf{P}_{i}=\left[\begin{array}{c}
\left(\mathbf{p}_{1}^{i}\right)^{\top} \\
\left(\mathbf{p}_{2}^{i}\right)^{\top} \\
\left(\mathbf{p}_{3}^{i}\right)^{\top}
\end{array}\right]
$$

Linear triangulation method

$$
\begin{array}{rlrl}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}} & =\left(\mathbf{p}_{1}^{1}\right)^{\top} \underline{\mathbf{X}}, & u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{1}^{2}\right)^{\top} \underline{\mathbf{X}}, \\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{1}\right)^{\top} \underline{\mathbf{X}}, & v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{2}\right)^{\top} \underline{\mathbf{X}},
\end{array}
$$

Gives

$$
\mathbf{D} \underline{\mathbf{X}}=\mathbf{0}, \quad \mathbf{D}=\left[\begin{array}{c}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{1}^{1}\right)^{\top} \tag{14}\\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{2}^{1}\right)^{\top} \\
u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{1}^{2}\right)^{\top} \\
v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{2}^{2}\right)^{\top}
\end{array}\right], \quad \mathbf{D} \in \mathbb{R}^{4,4}, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- back-projected rays will generally not intersect due to image error, see next
- using Jack-knife $(\rightarrow 63)$ not recommended
- we will use SVD $(\rightarrow 89)$
- but the result will not be invariant to projective frame
replacing $\mathbf{P}_{1} \mapsto \mathbf{P}_{1} \mathbf{H}, \mathbf{P}_{2} \mapsto \mathbf{P}_{2} \mathbf{H}$ does not always result in $\underline{\mathbf{X}} \mapsto \mathbf{H}^{-1} \underline{\mathbf{X}}$
- note the homogeneous form in (14) can represent points at infinity

- The Least-Squares Triangulation by SVD

- if \mathbf{D} is full-rank we may minimize the algebraic least-squares error

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\|\mathbf{D} \underline{\mathbf{X}}\|^{2} \quad \text { s.t. } \quad\|\underline{\mathbf{X}}\|=1, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4} \quad \operatorname{sud}(\mathbb{Q})=\operatorname{USU}^{\top}
$$

- let \mathbf{D}_{i} be the i-th row of $\mathbf{D},\|z\|^{2}=z^{\top} \cdot z$
$\|\mathbf{D} \underline{\mathbf{X}}\|^{2}=\sum_{i=1}^{4}\left(\mathbf{D}_{i} \underline{\mathbf{X}}\right)^{2}=\sum_{i=1}^{4} \underline{\mathbf{X}}^{\top} \mathbf{D}_{i}^{\top} \mathbf{D}_{i} \underline{\mathbf{X}}=\underline{\mathbf{X}}^{\top} \mathbf{Q} \underline{\mathbf{X}}$, where $\mathbf{Q}=\sum_{i=1}^{4} \mathbf{D}_{i}^{\top} \mathbf{D}_{i}=\mathbf{D}^{\top} \mathbf{D} \in \mathbb{R}^{4,4}$
- we write the SVD of \mathbf{Q} as $\mathbf{Q}=\sum_{j=1}^{4} \sigma_{j}^{2} \mathbf{u}_{j} \mathbf{u}_{j}^{\top}$, in which [Golub \& van Loan 2013, Sec. 2.5]

$$
\sigma_{1}^{2} \geq \cdots \geq \sigma_{4}^{2} \geq 0 \quad \text { and } \quad \mathbf{u}_{l}^{\top} \mathbf{u}_{m}= \begin{cases}0 & \text { if } l \neq m \\ 1 & \text { otherwise }\end{cases}
$$

- then $\underline{\mathbf{X}}=\arg \underbrace{\min _{\sigma_{4}^{2}},\|q\|=1}_{\text {Proof (by contradiction). }} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\mathbf{u}_{4}$

Let $\overline{\mathbf{q}}=\sum_{i=1}^{4} a_{i} \mathbf{u}_{i}$ s.t. $\sum_{i=1}^{4} a_{i}^{2}=1$, then $\|\overline{\mathbf{q}}\|=1$, and

$$
\overline{\mathbf{q}}^{\top} \mathbf{Q} \overline{\mathbf{q}}=\sum_{j=1}^{4} \sigma_{j}^{2}\left(\overline{\mathbf{q}}^{\top} \mathbf{u}\right)\left(\mathbf{u}_{j}^{\top} \overline{\mathbf{q}}\right)=\sum_{j=1}^{4} \sigma_{j}^{2}\left(\mathbf{u}_{j}^{\top} \overline{\mathbf{q}}\right)^{2}=\cdots=\sum_{j=1}^{4} a_{j}^{2} \sigma_{j}^{2} \geq\left(\sum_{j=1}^{4} a_{j}^{2}\right) \sigma_{4}^{2}=\sigma_{4}^{2}
$$

cont'd

- if $\sigma_{4} \ll \sigma_{3}$, there is a unique solution $\underline{\mathbf{X}}=\mathbf{u}_{4}$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^{2}=\sigma_{4}^{2}$
the quality (conditioning) of the solution may be expressed as $q=\sigma_{3} / \sigma_{4}$ (greater is better)

Matlab code for the least-squares solver:
$[\mathrm{U}, \mathrm{O}, \mathrm{V}]=\operatorname{svd}(\mathrm{D}) ; \leftarrow$? works but we have to chock! $\mathrm{X}=\mathrm{V}(:$, end);

\circledast P1; 1pt: Why did we decompose \mathbf{D} and not $\mathbf{Q}=\mathbf{D}^{\top} \mathbf{D}$?

-Numerical Conditioning

- The equation $\mathbf{D} \underline{\mathbf{X}}=\mathbf{0}$ in (14) may be ill-conditioned for numerical computation, which results in a poor estimate for $\underline{\mathbf{X}}$.

Why: on a row of \mathbf{D} there are big entries together with small entries, e.g. of orders projection centers in mm , image points in px

$$
\left[\begin{array}{cccc}
10^{3} & 0 & 10^{3} & 10^{6} \\
0 & 10^{3} & 10^{3} & 10^{6} \\
10^{3} & 0 & 10^{3} & 10^{6} \\
0 & 10^{3} & 10^{3} & 10^{6}
\end{array}\right]
$$

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$
\mathbf{0}=\mathbf{D} \underline{\mathbf{X}}=\underbrace{\mathbf{D} \mathbf{S}^{-1} \underline{\mathbf{X}}=\overline{\mathbf{D}} \underline{\overline{\mathbf{X}}} .}
$$

choose \mathbf{S} to make the entries in $\hat{\mathbf{D}}$ all smaller than unity in absolute value:

$$
\mathbf{S}=\operatorname{diag}\left(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}\right) \quad \mathrm{S}=\operatorname{diag}(1 . / \max (\operatorname{abs}(\mathrm{D}), 1))
$$

2. solve for $\overline{\mathbf{X}}$ as before
3. get the final solution as $\underline{\mathbf{X}}=\mathbf{S} \underline{\mathbf{X}}$

- when SVD is used in camera resection, conditioning is essential for success

Algebraic Error vs Reprojection Error

- algebraic error (c - camera index, $\left(u^{c}, v^{c}\right)$-image coordinates) from SVD $\rightarrow 90$

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\sigma_{4}^{2}=\sum_{c=1}^{2}\left[\left(u^{c}\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\mathbf{X}}\right)^{2}+\left(v^{c}\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\mathbf{X}}\right)^{2}\right]
$$

- reprojection error

$$
e^{2}(\underline{\mathbf{X}})=\sum_{c=1}^{2}\left[\left(u^{c}-\frac{\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\mathbf{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\underline{\mathbf{X}}}}\right)^{2}+\left(v^{c}-\frac{\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\mathbf{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}}\right)^{2}\right]
$$

- algebraic error zero \Leftrightarrow reprojection error zero
- epipolar constraint satisfied \Rightarrow equivalent results
- in general: minimizing algebraic error is cheap but it gives inferior results
- minimizing reprojection error is expensive but it gives good results

7 the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D

- the golden standard method - deferred to $\rightarrow 104$

Ex:

- forward camera motion
- error $f / 50$ in image 2 , orthogonal to epipolar plane
X_{T} - noiseless ground truth position
X_{r} - reprojection error minimizer
X_{a} - algebraic error minimizer
m - measurement (m_{T} with noise in v^{2})

C_{2}	$m_{r}{ }^{m}$
$\bullet e_{2}$	$m_{a_{n--}}$

- We Have Added to The ZOO

continuation from $\rightarrow 68$

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	62
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, t	66
relative orientation	3 world-world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	R, t	69
fundamental matrix	7 img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{7}$	\mathbf{F}	83
relative orientation	$\mathbf{K}, 5$ img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{5}$	\mathbf{R}, t	87
triangulation	$\mathbf{P}_{1}, \mathbf{P}_{2}, 1$ img-img correspondence $\left(m_{i}, m_{i}^{\prime}\right)$	X	88

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators $\rightarrow 117$)
- algebraic error optimization (SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

Module V

Optimization for 3D Vision

(5.) The Concept of Error for Epipolar Geometry
5.2 Levenberg-Marquardt's Iterative Optimization
5.3 The Correspondence Problem
(5.4) Optimization by Random Sampling
covered by
[1] [H\&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981
additional referencesP. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. Computer Vision, Graphics, and Image Processing, 18:97-108, 1982.
O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236-243.

Springer-Verlag, 2003.
\square O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In Proc ICPR, vol 1:112-115, 2004.

-The Concept of Error for Epipolar Geometry

Problem: Given at least 8 matched points $x_{i} \leftrightarrow y_{j}$ in a general position, estimate the most likely (or most probable) fundamental matrix \mathbf{F}.

$$
\mathbf{x}_{i}=\left(u_{i}^{1}, v_{i}^{1}\right), \quad \mathbf{y}_{i}=\left(u_{i}^{2}, v_{i}^{2}\right), \quad i=1,2, \ldots, k, \quad k \geq 8
$$

- detected points (measurements) x_{i}, y_{i}
- we introduce matches $\mathbf{Z}_{i}=\left(u_{i}^{1}, v_{i}^{1}, u_{i}^{2}, v_{i}^{2}\right) \in \mathbb{R}^{4} ; \quad S=\left\{\mathbf{Z}_{i}\right\}_{i=1}^{k}$
- corrected points $\hat{x}_{i}, \hat{y}_{i} ; \quad \hat{\mathbf{Z}}_{i}=\left(\hat{u}_{i}^{1}, \hat{v}_{i}^{1}, \hat{u}_{i}^{2}, \hat{v}_{i}^{2}\right) ; \hat{S}=\left\{\hat{\mathbf{Z}}_{i}\right\}_{i=1}^{k}$ are correspondences
- correspondences satisfy the epipolar geometry exactly $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\underline{\mathbf{x}}}_{i}=0, i=1, \ldots, k$
- small correction is more probable
- let $\mathbf{e}_{i}(\cdot)$ be the 'reprojection error' (vector) per match i,

$$
\begin{align*}
& \mathbf{e}_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right)=\left[\begin{array}{l}
\mathbf{x}_{i}-\hat{\mathbf{x}}_{i} \\
\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}
\end{array}\right]=\mathbf{e}_{i}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}\right)=\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}(\mathbf{F}) \tag{15}\\
&\left\|\mathbf{e}_{i}(\cdot)\right\|^{2} \stackrel{\text { def }}{=} \mathbf{e}_{i}^{2}(\cdot)=\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}\right\|^{2}=\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}(\mathbf{F})\right\|^{2}
\end{align*}
$$

-cont'd

- the total reprojection error (of all data) then is

$$
L(S \mid \hat{S}, \mathbf{F})=\sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right)=\sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}\right)
$$

- and the optimization problem is

$$
\begin{equation*}
\left(\hat{S}^{*}, \mathbf{F}^{*}\right)=\arg \min _{\substack{\mathbf{F} \\ \operatorname{rank} \mathbf{F}=2}} \min _{\substack{\hat{S} \\ \hat{\mathbf{y}}_{i}^{\top} \mathbf{F} \\ \underline{\underline{x}}_{i}=0}} \sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right) \tag{16}
\end{equation*}
$$

Three possible approaches

- they differ in how the correspondences \hat{x}_{i}, \hat{y}_{i} are obtained:

1. direct optimization of reprojection error over all variables \hat{S}, \mathbf{F}
2. Sampson optimal correction $=$ partial correction of \mathbf{Z}_{i} towards $\hat{\mathbf{Z}}_{i}$ used in an iterative minimization over \mathbf{F}
3. removing \hat{x}_{i}, \hat{y}_{i} altogether $=$ marginalization of $L(S, \hat{S} \mid \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F} not covered, the marginalization is difficult

Method 1: Geometric Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_{i} \mathbf{F} \hat{\underline{\mathbf{x}}}_{i}=0, \operatorname{rank} \mathbf{F}=2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H\&Z,Sec. 9.5] for complete characterization

$$
\mathbf{P}_{1}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \quad \mathbf{P}_{2}=\left[\begin{array}{lll}
\left.\underline{\mathbf{e}}_{2}\right]_{\times} \mathbf{F}+\underline{\mathbf{e}}_{2} \underline{\mathbf{e}}_{1}^{\top} & \underline{e}_{2} \tag{17}
\end{array}\right]
$$

$\circledast \mathrm{H} 3$; 2pt: Assuming $\underline{\mathbf{e}}_{1}, \underline{\mathbf{e}}_{2}$ are epipoles of \mathbf{F}, verify that \mathbf{F} is a fundamental matrix of $\mathbf{P}_{1}, \mathbf{P}_{2}$.
Hint: \mathbf{A} is skew symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=0$ for all vectors \mathbf{x}.

1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm $\rightarrow 83$; construct camera $\mathbf{P}_{2}^{(0)}$ from $\mathbf{F}^{(0)}$ using (17)
2. triangulate 3D points $\hat{\mathbf{X}}_{i}^{(0)}$ from matches $\left(x_{i}, y_{i}\right)$ for all $i=1, \ldots, k$
3. starting from $\mathbf{P}_{2}^{(0)}, \hat{\mathbf{X}}^{(0)}$ minimize the reprojection error (15)

$$
\left(\hat{\mathbf{X}}^{*}, \mathbf{P}_{2}^{*}\right)=\arg \min _{\mathbf{P}_{2}, \hat{\mathbf{X}}} \sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}\left(\hat{\mathbf{X}}_{i}, \mathbf{P}_{2}\right)\right)
$$

where

$$
\hat{\mathbf{Z}}_{i}=\left(\hat{\mathbf{x}}_{i}, \hat{\mathbf{y}}_{i}\right) \quad(\text { Cartesian }), \quad \hat{\mathbf{x}}_{i} \simeq \mathbf{P}_{1} \underline{\underline{\mathbf{x}}}_{i}, \quad \underline{\hat{\mathbf{y}}}_{i} \simeq \mathbf{P}_{2} \underline{\hat{\mathbf{x}}}_{i} \text { (homogeneous) }
$$

Non-linear, non-convex problem
4. compute \mathbf{F} from $\mathbf{P}_{1}, \mathbf{P}_{2}^{*}$

- $3 k+12$ parameters to be found: latent: $\hat{\mathbf{X}}_{i}$, for all i (correspondences!), non-latent: \mathbf{P}_{2}
- minimal representation: $3 k+7$ parameters, $\mathbf{P}_{2}=\mathbf{P}_{2}(\mathbf{F})$
- there are pitfalls; this is essentially bundle adjustment; we will return to this later

Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

- we will get rid of the latent parameters \hat{X} needed for obtaining the correction
[H\&Z, p. 287], [Sampson 1982]
- we will recycle the algebraic error $\varepsilon=\underline{\mathbf{y}}^{\top} \mathbf{F} \underline{\mathbf{x}}$ from $\rightarrow 83$
- consider matches \mathbf{Z}_{i}, correspondences $\hat{\mathbf{Z}}_{i}$, and reprojection error $\mathbf{e}_{i}=\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}\right\|^{2}$
- correspondences satisfy $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\underline{\mathbf{x}}}_{i}=0, \quad \hat{\underline{\mathbf{x}}}_{i}=\left(\hat{u}^{1}, \hat{v}^{1}, 1\right), \underline{\hat{\mathbf{y}}}_{i}=\left(\hat{u}^{2}, \hat{v}^{2}, 1\right)$
- this is a manifold $\mathcal{V}_{F} \in \mathbb{R}^{4}$: a set of points $\hat{\mathbf{Z}}=\left(\hat{u}^{1}, \hat{v}^{1}, \hat{u}^{2}, \hat{v}^{2}\right)$ consistent with \mathbf{F}
- algebraic error vanishes for $\hat{\mathbf{Z}}_{i}: \mathbf{0}=\boldsymbol{\varepsilon}_{i}\left(\hat{\mathbf{Z}}_{i}\right)=\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}$

Sampson's idea: Linearize the algebraic error $\boldsymbol{\varepsilon}(\mathbf{Z})$ at \mathbf{Z}_{i} (where it is non-zero) and evaluate the resulting linear function at $\hat{\mathbf{Z}}_{i}$ (where it is zero). The zero-crossing replaces \mathcal{V}_{F} by a linear manifold \mathcal{L}. The point on \mathcal{V}_{F} closest to \mathbf{Z}_{i} is replaced by the closest point on \mathcal{L}.

-Sampson's Approximation of Reprojection Error

- linearize $\boldsymbol{\varepsilon}(\mathbf{Z})$ at match \mathbf{Z}_{i}, evaluate it at correspondence $\hat{\mathbf{Z}}_{i}$

$$
0=\boldsymbol{\varepsilon}_{i}\left(\hat{\mathbf{Z}}_{i}\right) \approx \boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)+\underbrace{\frac{\partial \boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}}_{\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right)} \underbrace{\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)}_{\mathbf{e}_{i}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)} \stackrel{\text { def }}{=} \boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)+\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right) \mathbf{e}_{i}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)
$$

- goal: compute function $\mathbf{e}_{i}(\cdot)$ from $\varepsilon_{i}(\cdot)$, where $\mathbf{e}_{i}(\cdot)$ is the distance of $\hat{\mathbf{Z}}_{i}$ from \mathbf{Z}_{i}
- we have a linear underconstrained equation for $\mathbf{e}_{i}(\cdot)$
- we look for a minimal $\mathbf{e}_{i}(\cdot)$ per match i

$$
\mathbf{e}_{i}(\cdot)^{*}=\arg \min _{\mathbf{e}_{i}(\cdot)}\left\|\mathbf{e}_{i}(\cdot)\right\|^{2} \quad \text { subject to } \quad \boldsymbol{\varepsilon}_{i}(\cdot)+\mathbf{J}_{i}(\cdot) \mathbf{e}_{i}(\cdot)=0
$$

- which has a closed-form solution note that $\mathbf{J}_{i}(\cdot)$ is not invertible! $\circledast \mathrm{P} 1 ; 1$ pt: derive $\mathrm{e}_{i}^{*}(\cdot)$

$$
\begin{align*}
& \mathbf{e}_{i}^{*}(\cdot)=-\mathbf{J}_{i}^{\top}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \tag{18}\\
& \varepsilon_{i}(\cdot) \\
&\left\|\mathbf{e}_{i}^{*}(\cdot)\right\|^{2}=\boldsymbol{\varepsilon}_{i}^{\top}(\cdot)\left(\cdot \mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i}(\cdot)
\end{align*}
$$

- this maps $\varepsilon_{i}(\cdot)$ to an estimate of $\mathbf{e}_{i}(\cdot)$ per correspondence
- we often do not need \mathbf{e}_{i}, just $\left\|\mathbf{e}_{i}\right\|^{2}$
exception: triangulation $\rightarrow 104$
- the unknown parameters F are inside: $\mathbf{e}_{i}=\mathbf{e}_{i}(\mathbf{F}), \boldsymbol{\varepsilon}_{i}=\boldsymbol{\varepsilon}_{i}(\mathbf{F}), \mathbf{J}_{i}=\mathbf{J}_{i}(\mathbf{F})$

Example: Fitting A Circle To Scattered Points

Problem: Fit a zero-centered circle \mathcal{C} to a set of 2D points $\left\{x_{i}\right\}_{i=1}^{k}, \mathcal{C}:\|\mathbf{x}\|^{2}-r^{2}=0$.

1. consider radial error as the 'algebraic error' $\varepsilon(\mathbf{x})=\|\mathbf{x}\|^{2}-r^{2}$
2. linearize it at $\hat{\mathrm{x}}$
we are dropping i in $\varepsilon_{i}, \mathbf{e}_{i}$ etc for clarity

$$
\varepsilon(\hat{\mathbf{x}}) \approx \varepsilon(\mathbf{x})+\underbrace{\frac{\partial \varepsilon(\mathbf{x})}{\partial \mathbf{x}}}_{\mathbf{J}(\mathbf{x})=2 \mathbf{x}^{\top}} \underbrace{(\hat{\mathbf{x}}-\mathbf{x})}_{\mathbf{e}(\hat{\mathbf{x}}, \mathbf{x})}=\cdots=2 \mathbf{x}^{\top} \hat{\mathbf{x}}-\left(r^{2}+\|\mathbf{x}\|^{2}\right) \stackrel{\text { def }}{=} \varepsilon_{L}(\hat{\mathbf{x}})=\phi
$$

$\boldsymbol{\varepsilon}_{L}(\hat{\mathbf{x}})=0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^{2}+\|\mathbf{x}\|^{2}}{2\|\mathbf{x}\|} \quad$ not tangent to \mathcal{C}, outside!
3. using (18), express error approximation \mathbf{e}^{*} as

$$
\left\|\mathbf{e}^{*}\right\|^{2}=\boldsymbol{\varepsilon}^{\top}\left(\mathbf{J J}^{\top}\right)^{-1} \varepsilon=\frac{\left(\|\mathbf{x}\|^{2}-r^{2}\right)^{2}}{4\|\mathbf{x}\|^{2}}
$$

4. fit circle

$$
r^{*}=\arg \min _{r} \sum_{i=1}^{k} \frac{\left(\left\|\mathbf{x}_{i}\right\|^{2}-r^{2}\right)^{2}}{4\left\|\mathbf{x}_{i}\right\|^{2}}=\cdots=\left(\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\left\|\mathbf{x}_{i}\right\|^{2}}\right)^{-\frac{1}{2}}
$$

- this example results in a convex quadratic optimization problem
- note that

$$
\arg \min _{r} \sum_{i=1}^{k}\left(\left\|\mathbf{x}_{i}\right\|^{2}-r^{2}\right)^{2}=\left(\frac{1}{k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|^{2}\right)^{\frac{1}{2}}
$$

Circle Fitting: Some Results

opt: 1.8, Smp: 1.9, dir: 2.3
medium isotropic noise

$1.8,2.0,2.2$
big radial noise

1.6, 1.8, 2.6
big isotropic noise

1.6, 2.0, 2.4
mean ranks over 10000 random trials with $k=32$ samples
optimal estimator for isotropic error (black, dashed):
$r \approx \frac{3}{4 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|+\sqrt{\left(\frac{3}{4 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|\right)^{2}-\frac{1}{2 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|^{2}}$

which method is better?

- error should model noise, radial noise and isotropic noise behave differently
- ground truth: Normally distributed isotropic error, Gamma-distributed radial error
- Sampson: better for the radial distribution model; Direct: better for the isotropic model
- no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator

Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

Discussion: On The Art of Probabilistic Model Design. . .

- a few models for fitting zero-centered circle C of radius r to points in \mathbb{R}^{2}

$$
\text { marginalized over } C
$$

$\frac{E}{\frac{\hbar}{x}}$

- mode inside the circle
- models the inside well
- tends to normal distrib.
orthogonal deviation from C

$\frac{1}{2 \pi \Gamma\left(\frac{r^{2}}{\sigma}\right)} \frac{1}{\|\mathbf{x}\|^{2}}\left(\frac{r\|\mathbf{x}\|}{\sigma}\right)^{\frac{r^{2}}{\sigma}} e^{-\frac{r\|\mathbf{x}\|}{\sigma}}$
- peak at the center
- unusable for small radii
- tends to Dirac distrib.

Sampson approximation

$$
\frac{1}{r \sigma \sqrt{(2 \pi)^{3}}} e^{-\frac{e^{2}(\mathbf{x} ; r)}{2 \sigma^{2}}}
$$

- mode at the circle
- hole at the center
- tends to normal distrib.

-Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is

$$
\varepsilon_{i}(\mathbf{F})=\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}, \quad \mathbf{x}_{i}=\left(u_{i}^{1}, v_{i}^{1}\right), \quad \mathbf{y}_{i}=\left(u_{i}^{2}, v_{i}^{2}\right), \quad \varepsilon_{i} \in \mathbb{R}
$$

Let $\mathbf{F}=\left[\begin{array}{lll}\mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3}\end{array}\right]$ (per columns) $=\left[\begin{array}{l}\left(\mathbf{F}^{1}\right)^{\top} \\ \left(\mathbf{F}^{2}\right)^{\top} \\ \left(\mathbf{F}^{3}\right)^{\top}\end{array}\right]$ (per rows), $\mathbf{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, then

Sampson

$$
\begin{aligned}
\mathbf{J}_{i}(\mathbf{F}) & =\left[\frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{2}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{2}}\right] & \mathbf{J}_{i} \in \mathbb{R}^{1,4} & \text { derivatives over point coords. } \\
& =\left[\left(\mathbf{F}_{1}\right)^{\top} \underline{\mathbf{y}}_{i},\left(\mathbf{F}_{2}\right)^{\top} \underline{\mathbf{y}}_{i},\left(\mathbf{F}^{1}\right)^{\top} \underline{\mathbf{x}}_{i},\left(\mathbf{F}^{2}\right)^{\top} \underline{\mathbf{x}}_{i}\right] & & \\
\mathbf{e}_{i}(\mathbf{F}) & =-\frac{\mathbf{J}_{i}(\mathbf{F}) \varepsilon_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}(\mathbf{F})\right\|^{2}} & \mathbf{e}_{i}(\mathbf{F}) \in \mathbb{R}^{4} & \text { Sampson error vector } \\
e_{i}(\mathbf{F}) & =\left\|\mathbf{e}_{i}(\mathbf{F})\right\|=\frac{\varepsilon_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}(\mathbf{F})\right\|}=\frac{\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}}{\sqrt{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right\|^{2}}} & e_{i}(\mathbf{F}) \in \mathbb{R} & \text { scalar Sampson error }
\end{aligned}
$$

- Sampson error 'normalizes' the algebraic error
- automatically copes with multiplicative factors $\mathbf{F} \mapsto \lambda \mathbf{F}$
- actual optimization not yet covered $\rightarrow 108$

Thank You

$$
0
$$

