Beyond RANSAC

By marginalization in (23) we have lost constraints on M (eg. uniqueness). One can choose a better model when not marginalizing:

$$
\pi(M, \mathbf{F}, E, D)=\underbrace{p(E \mid M, \mathbf{F})}_{\text {geometric error }} \cdot \underbrace{p(D \mid M)}_{\text {similarity }} \cdot \underbrace{p(\mathbf{F})}_{\text {prior }} \cdot \underbrace{P(M)}_{\text {constraints }}
$$

this is a global model: decisions on $m_{i j}$ are no longer independent!
In the MH scheme

- one can work with full $p(M, \mathbf{F} \mid E, D)$, then $S=(M, \mathbf{F})$
- explicit labeling $m_{i j}$ can be done by, e.g. sampling from

$$
q\left(m_{i j} \mid \mathbf{F}\right) \sim\left(\left(1-P_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{F}\right), P_{0} p_{0}\left(e_{i j} \mid \mathbf{F}\right)\right)
$$

when $P(M)$ uniform then always accepted, $a=1$

- we can compute the posterior probability of each match $p\left(m_{i j}\right)$ by histogramming $m_{i j}$ from $\left\{S_{i}\right\}$
- local optimization can then use explicit inliers and $p\left(m_{i j}\right)$
- error can be estimated for elements of \mathbf{F} from $\left\{S_{i}\right\}$
does not work in RANSAC!
- large error indicates problem degeneracy
- good conditioning is not a requirement
this is not directly available in RANSAC
- one can find the most probable number of epipolar geometries (homographies or other models)
by reversible jump MCMC if there are multiple models explaning data, RANSAC will return one of them randomly

Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

video
simplifications

- vanishing points restricted to the set of all pairwise segment intersections
- mother lines fixed by segment centroid (then θ_{L} uniquely given by λ_{i})
- primitives $=$ line segments
- latent variables

1. each line has a vanishing point label $\lambda_{i} \in\{\emptyset, 1,2\}, \emptyset$ represents an outlier
2. 'mother line' parameters θ_{L} (they pass through their vanishing points)

- explicit variables

1. two unknown vanishing points v_{1}, v_{2}

- marginal proposals (v_{i} fixed, v_{j} proposed)
- minimal sample $s=2$

$$
\arg \min _{v_{1}, v_{2}, \Lambda, \theta_{L}} V\left(v_{1}, v_{2}, \Lambda, L \mid S\right)
$$

Module VI

3D Structure and Camera Motion

6.1) Introduction
6.2 Reconstructing Camera Systems
6.3Bundle Adjustment
covered by
[1] [H\&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
[2] Triggs, B. et al. Bundle Adjustment-A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.
additional referencesD. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1-30, 2009.

- The Projective Reconstruction Theorem

Observation: Unless \mathbf{P}_{i} are constrained, then for any number of cameras $i=1, \ldots, k$

$$
\underline{\mathbf{m}}_{i} \simeq \mathbf{P}_{i} \underline{\mathbf{X}}=\underbrace{\mathbf{P}_{i} \mathbf{H}^{-1}}_{\mathbf{P}_{i}^{\prime}} \underbrace{\mathbf{H} \underline{\mathbf{X}}}_{\underline{\mathbf{x}}^{\prime}}=\mathbf{P}_{i}^{\prime} \underline{\mathbf{X}}^{\prime}
$$

- when \mathbf{P}_{i} and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_{i}), they are given up to a common 3D homography \mathbf{H}
(translation, rotation, scale, shear, pure perspectivity)

- when cameras are internally calibrated (\mathbf{K}_{i} known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_{i}
[H\&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale)

- Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{i j}=\left[\hat{\mathbf{t}}_{i j}\right]_{\times} \hat{\mathbf{R}}_{i j}$ and calibration matrices \mathbf{K}_{i} reconstruct the camera system $\mathbf{P}_{i}, i=1, \ldots, k$
$\rightarrow 80$ and $\rightarrow 145$ on representing \mathbf{E}

We construct calibrated camera pairs $\hat{\mathbf{P}}_{i j} \in \mathbb{R}^{6,4} \rightarrow 128$

$$
\hat{\mathbf{P}}_{i j}=\left[\begin{array}{c}
\mathbf{K}_{i}^{-1} \hat{\mathbf{P}}_{i} \\
\mathbf{K}_{j}^{-1} \hat{\mathbf{P}}_{j}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right] \in \mathbb{R}^{6,4}
$$

- singletons i, j correspond to graph nodes k nodes
- pairs $i j$ correspond to graph edges p edges
$\hat{\mathbf{P}}_{i j}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{i j} \mathbf{H}_{i j}=\mathbf{P}_{i j}$

$$
\underbrace{\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \tag{28}\\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right]}_{\mathbb{R}^{\mathbf{6}, 4}} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{i j} & \mathbf{t}_{i j} \\
\mathbf{0}^{\top} & s_{i j}
\end{array}\right]}_{\mathbf{H}_{i j} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i} \\
\mathbf{R}_{j} & \mathbf{t}_{j}
\end{array}\right]}_{\mathbb{R}^{6,4}}
$$

- (28) is a linear system of $24 p$ eqs. in $7 p+6 k$ unknowns $\quad 7 p \sim\left(\mathbf{t}_{i j}, \mathbf{R}_{i j}, s_{i j}\right), 6 k \sim\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$
- each \mathbf{P}_{i} appears on the right side as many times as is the degree of node \mathbf{P}_{i} eg. P_{5} 3-times

-cont'd

Eq. (28) implies

$$
\left[\begin{array}{c}
\mathbf{R}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{R}_{i} \\
\mathbf{R}_{j}
\end{array}\right] \quad\left[\begin{array}{c}
\mathbf{t}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i j}+s_{i j} \hat{\mathbf{t}}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{i} \\
\mathbf{t}_{j}
\end{array}\right]
$$

- $\mathbf{R}_{i j}$ and $\mathrm{t}_{i j}$ can be eliminated:

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, \quad \hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}=\mathbf{t}_{j}, \quad s_{i j}>0 \tag{29}
\end{equation*}
$$

- note transformations that do not change these equations
assuming no error in $\hat{\mathbf{R}}_{i j}$

$$
\text { 1. } \quad \mathbf{R}_{i} \mapsto \mathbf{R}_{i} \mathbf{R}, \quad \text { 2. } \quad \mathbf{t}_{i} \mapsto \sigma \mathbf{t}_{i} \text { and } s_{i j} \mapsto \sigma s_{i j}, \quad \text { 3. } \quad \mathbf{t}_{i} \mapsto \mathbf{t}_{i}+\mathbf{R}_{i} \mathbf{t}
$$

- the global frame is fixed, e.g. by selecting

$$
\begin{equation*}
\mathbf{R}_{1}=\mathbf{I}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \frac{1}{p} \sum_{i, j} s_{i j}=1 \tag{30}
\end{equation*}
$$

- rotation equations are decoupled from translation equations
- in principle, $s_{i j}$ could correct the sign of $\hat{\mathbf{t}}_{i j}$ from essential matrix decomposition but \mathbf{R}_{i} cannot correct the α sign in $\hat{\mathbf{R}}_{i j}$
\Rightarrow therefore make sure all points are in front of cameras and constrain $s_{i j}>0 ; \rightarrow 82$
+ pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations)
otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, i, j \in V,(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each. Per columns $c=1,2,3$ of \mathbf{R}_{j} :

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \quad \text { for all } i, j \tag{31}
\end{equation*}
$$

- fix c and denote $\mathbf{r}^{c}=\left[\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \ldots, \mathbf{r}_{k}^{c}\right]^{\top} \quad c$-th columns of all rotation matrices stacked; $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$
- then (31) becomes $\mathbf{D} r^{c}=\mathbf{0}$
$\mathbf{D} \in \mathbb{R}^{3 p, 3 k}$
- $3 p$ equations for $3 k$ unknowns $\rightarrow p \geq k$
in a 1-connected graph we have to fix $\mathbf{r}_{1}^{c}=[1,0,0]$
Ex: $(k=p=3)$

$\underset{\hat{\mathbf{E}}_{13}}{\hat{\mathbf{R}}_{23}} \rightarrow$| $\hat{\mathbf{R}}_{12} \mathbf{r}_{1}^{c}-\mathbf{r}_{2}^{c}=\mathbf{0}$ |
| :--- |
| $\hat{\mathbf{R}}_{23} \mathbf{R}_{2}^{c}-\mathbf{r}_{3}^{c}=\mathbf{0}$ |
| $\hat{\mathbf{R}}_{13} \mathbf{r}_{1}^{c}-\mathbf{r}_{3}^{c}=\mathbf{0}$ |\(\rightarrow \quad \mathbf{D} \mathbf{r}^{c}=\left[\begin{array}{ccc}\hat{\mathbf{R}}_{12} \& -\mathbf{I} \& \mathbf{0}

\mathbf{0} \& \hat{\mathbf{R}}_{23} \& -\mathbf{I}

\hat{\mathbf{R}}_{13} \& \mathbf{0} \& -\mathbf{I}\end{array}\right]\left[$$
\begin{array}{c}\mathbf{r}_{1}^{c} \\
\mathbf{r}_{2}^{c} \\
\mathbf{r}_{3}^{c}\end{array}
$$\right]=\mathbf{0}\)

- must hold for any c

Idea:

[Martinec \& Pajdla CVPR 2007]

1. find the space of all $r^{c} \in \mathbb{R}^{3 k}$ that solve (31) \mathbf{D} is sparse, use $[\mathrm{V}, \mathrm{E}]=\operatorname{eigs}\left(\mathrm{D}^{\prime} * \mathrm{D}, 3,0\right)$; (Matlab)
2. choose 3 unit orthogonal vectors in this space

3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD because $\left\|\mathbf{r}^{c}\right\|=1$ is necessary but insufficient

- global world rotation is arbitrary

$$
\mathbf{R}_{i}^{*}=\mathbf{U V}^{\top} \text {, where } \mathbf{R}_{i}=\mathbf{U D V}^{\top}
$$

Finding The Translation Component in Eq. (29)

From (29) and (30):

$$
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}-\mathbf{t}_{j}=\mathbf{0}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \sum_{i, j} s_{i j}=p, \quad s_{i j}>0, \quad \mathbf{t}_{i} \in \mathbb{R}^{d}
$$

- in rank $d: d \cdot p+d+1$ equations for $d \cdot k+p$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1} \stackrel{\text { def }}{=} Q(d, k)$

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

$$
p=k-1
$$

$$
k=p=3
$$

$k \leq 2$ for any d

- equations insufficient for chains, trees, or when $d=1$
collinear cameras
- 3 -connectivity implies sufficient equations for $d=3$
cams. in general pos. in 3D
- s-connected graph has $p \geq\left\lceil\frac{s k}{2}\right\rceil$ edges for $s \geq 2$, hence $p \geq\left\lceil\frac{3 k}{2}\right\rceil \geq Q(3, k)=\frac{3 k}{2}-2$
- 4-connectivity implies sufficient eqns. for any k when $d=2$
coplanar cams
- since $p \geq\lceil 2 k\rceil \geq Q(2, k)=2 k-3$
- maximal planar tringulated graphs have $p=3 k-6$ and give a solution for $k \geq 3$
maximal planar triangulated graph example:

cont'd

Linear equations in (29) and (30) can be rewritten to

$$
\mathbf{D t}=\mathbf{0}, \quad \mathbf{t}=\left[\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}, \ldots, \mathbf{t}_{k}^{\top}, s_{12}, \ldots, s_{i j}, \ldots\right]^{\top}
$$

for $d=3: \quad \mathbf{t} \in \mathbb{R}^{3 k+p}, \quad \mathbf{D} \in \mathbb{R}^{3 p, 3 k+p} \quad$ is sparse

$$
\mathbf{t}^{*}=\underset{\mathbf{t}, s_{i j}>0}{\arg \min } \mathbf{t}^{\top} \mathbf{D}^{\top} \mathbf{D} \mathbf{t}
$$

- this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

- but check the rank first!

Solving Eq．（29）by Stepwise Gluing

Given：Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples． Initialization

1．initialize camera cluster \mathcal{C} with P_{1}, P_{2} ，
2．find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5 －point algorithm $\rightarrow 87$
3．construct camera pair

$$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

4．compute 3D reconstruction $\left\{X_{i}\right\}$ per match from $M_{12} \quad \rightarrow 104$
5．initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$
 and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

Attaching camera $P_{j} \notin \mathcal{C}$

1．select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}
2．estimate \mathbf{P}_{j} using \mathcal{X}_{j} ，RANSAC with the 3－pt alg．（P3P），projection errors $\mathbf{e}_{i j}$ in $\mathcal{X}_{j} \quad \rightarrow 66$
3．reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4．filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5．add P_{j} to \mathcal{C}
6．perform bundle adjustment on \mathcal{X} and \mathcal{C} coming next $\rightarrow 136$

Thank You

