
Beyond RANSAC

By marginalization in (23) we have lost constraints on M (eg. uniqueness). One can choose a
better model when not marginalizing:

π(M,F, E,D) = p(E |M,F)︸ ︷︷ ︸
geometric error

· p(D |M)︸ ︷︷ ︸
similarity

· p(F)︸ ︷︷ ︸
prior

· P (M)︸ ︷︷ ︸
constraints

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | E,D), then S = (M,F)

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− P0) p1(eij | F), P0 p0(eij | F)

)
when P (M) uniform then always accepted, a = 1 ~ derive

• we can compute the posterior probability of each match p(mij) by histogramming mij
from {Si}

• local optimization can then use explicit inliers and p(mij)

• error can be estimated for elements of F from {Si} does not work in RANSAC!

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models) and model selection

if there are multiple models explaning data, RANSAC will return one of them randomly
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is
known, square pixel.

video

simplifications

• vanishing points restricted to the set of all
pairwise segment intersections

• mother lines fixed by segment centroid (then θL
uniquely given by λi)

• primitives = line segments

• latent variables

1. each line has a vanishing point label
λi ∈ {∅, 1, 2}, ∅ represents an outlier

2. ‘mother line’ parameters θL (they pass
through their vanishing points)

• explicit variables

1. two unknown vanishing points v1, v2

• marginal proposals (vi fixed, vj proposed)

• minimal sample s = 2

� = 1
� = 2 � = ;v2

v1
arg min

v1,v2,Λ,θL
V (v1, v2,Λ, L | S)
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Module VI

3D Structure and Camera Motion

6.1 Introduction

6.2 Reconstructing Camera Systems

6.3 Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop
on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In

Proc CVPR, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment.

ACM Trans Math Software 36(1):1–30, 2009.
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IThe Projective Reconstruction Theorem

Observation: Unless Pi are constrained, then for any number of cameras i = 1, . . . , k

mi ' PiX= PiH
−1︸ ︷︷ ︸

P′i

HX︸︷︷︸
X′

= P′iX
′

• when Pi and X are both determined from correspondences (including calibrations
Ki), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

�1 �2 −→

m1 m2 X X ′

• when cameras are internally calibrated (Ki known) then H is restricted to a similarity
since it must preserve the calibrations Ki [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]

(translation, rotation, scale)
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IReconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices Êij = [t̂ij ]×R̂ij and
calibration matrices Ki reconstruct the camera system Pi, i = 1, . . . , k

→80 and →145 on representing E

P1 P8 P5P6Ê78P7
P4P3P2Ê12 Ê82Ê18 We construct calibrated camera pairs P̂ij ∈ R6,4 →128

P̂ij =

[
K−1
i P̂i

K−1
j P̂j

]
=

[
I 0

R̂ij t̂ij

]
∈ R6,4

• singletons i, j correspond to graph nodes k nodes

• pairs ij correspond to graph edges p edges

P̂ij are in different coordinate systems but these are related by similarities P̂ijHij = Pij[
I 0

R̂ij t̂ij

]
︸ ︷︷ ︸

R6,4

[
Rij tij
0> sij

]
︸ ︷︷ ︸

Hij∈R4,4

!
=

[
Ri ti
Rj tj

]
︸ ︷︷ ︸

R6,4

(28)

• (28) is a linear system of 24p eqs. in 7p+ 6k unknowns 7p ∼ (tij ,Rij , sij), 6k ∼ (Ri, ti)

• each Pi appears on the right side as many times as is the degree of node Pi eg. P5 3-times
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Icont’d

Eq. (28) implies

[
Rij

R̂ijRij

]
=

[
Ri

Rj

] [
tij

R̂ijtij + sij t̂ij

]
=

[
ti
tj

]
• Rij and tij can be eliminated:

R̂ijRi = Rj , R̂ijti + sij t̂ij = tj , sij > 0 (29)

• note transformations that do not change these equations assuming no error in R̂ij

1. Ri 7→ RiR, 2. ti 7→ σ ti and sij 7→ σsij , 3. ti 7→ ti + Rit

• the global frame is fixed, e.g. by selecting

R1 = I,
k∑
i=1

ti = 0,
1

p

∑
i,j

sij = 1 (30)

• rotation equations are decoupled from translation equations

• in principle, sij could correct the sign of t̂ij from essential matrix decomposition →80

but Ri cannot correct the α sign in R̂ij

⇒ therefore make sure all points are in front of cameras and constrain sij > 0; →82

+ pairwise correspondences are sufficient
– suitable for well-distributed cameras only (dome-like configurations)

otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve R̂ijRi = Rj , i, j ∈ V , (i, j) ∈ E where R are a 3× 3 rotation matrix each.
Per columns c = 1, 2, 3 of Rj :

R̂ijr
c
i − rcj = 0, for all i, j (31)

• fix c and denote rc =
[
rc1, r

c
2, . . . , r

c
k

]>
c-th columns of all rotation matrices stacked; rc∈R3k

• then (31) becomes Drc = 0 D ∈ R3p,3k

• 3p equations for 3k unknowns → p ≥ k in a 1-connected graph we have to fix rc1 = [1, 0, 0]

Ex: (k = p = 3)Ê23P1Ê13 Ê12P3P2 →
R̂12r

c
1 − rc2 = 0

R̂23r
c
2 − rc3 = 0

R̂13r
c
1 − rc3 = 0

→ Drc =

R̂12 −I 0

0 R̂23 −I
R̂13 0 −I

rc1rc2
rc3

 = 0

• must hold for any c

Idea: [Martinec & Pajdla CVPR 2007]

1. find the space of all rc ∈ R3k that solve (31) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)

2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors

3. find closest rotation matrices per cam. using SVD because ‖rc‖ = 1 is necessary but insufficient

R∗i = UV>, where Ri = UDV>• global world rotation is arbitrary
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Finding The Translation Component in Eq. (29)

From (29) and (30): d ≤ 3 – rank of camera center set, p – #pairs, k – #cameras

R̂ijti + sij t̂ij − tj = 0,

k∑
i=1

ti = 0,
∑
i,j

sij = p, sij > 0, ti ∈ Rd

• in rank d: d · p+ d+ 1 equations for d · k + p unknowns → p ≥ d(k−1)−1
d−1

def
= Q(d, k)

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

p = k − 1 k = p = 3 k = p = 4 k = p > 4

k ≤ 2 for any d 3 ≥ d ≥ 2: non-collinear ok 3 ≥ d ≥ 3: non-planar ok 3 ≥ d ≥ k − 1: impossible

• equations insufficient for chains, trees, or when d = 1 collinear cameras

• 3-connectivity implies sufficient equations for d = 3 cams. in general pos. in 3D

– s-connected graph has p ≥ d sk
2
e edges for s ≥ 2, hence p ≥ d 3k

2
e ≥ Q(3, k) = 3k

2
− 2

• 4-connectivity implies sufficient eqns. for any k when d = 2 coplanar cams

– since p ≥ d2ke ≥ Q(2, k) = 2k − 3
– maximal planar tringulated graphs have p = 3k − 6

and give a solution for k ≥ 3 maximal planar triangulated graph example:
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cont’d

Linear equations in (29) and (30) can be rewritten to

Dt = 0, t =
[
t>1 , t

>
2 , . . . , t

>
k , s12, . . . , sij , . . .

]>
for d = 3: t ∈ R3k+p, D ∈ R3p,3k+p is sparse

t∗ = argmin
t, sij>0

t>D>Dt

• this is a quadratic programming problem (mind the constraints!)

z = zeros(3*k+p,1);
t = quadprog(D.’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

• but check the rank first!
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ISolving Eq. (29) by Stepwise Gluing

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with P1, P2,

2. find essential matrix E12 and matches
M12 by the 5-point algorithm →87

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. compute 3D reconstruction {Xi} per

match from M12 →104

5. initialize point cloud X with {Xi}
satisfying chirality constraint zi > 0
and apical angle constraint |αi| > αT

αi

mi2

ei1(Xi,P1)
eij(Xi,Pj)

mij

PjP2

P1

Xi

mi1

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj
2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj →66

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l 6= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next →136
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Thank You
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