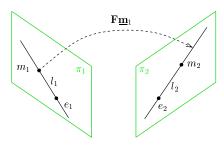
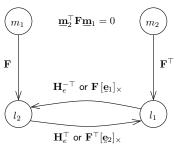
▶Some Mappings by the Fundamental Matrix



$$\begin{aligned} 0 &= \underline{\mathbf{m}}_2^{\top} \mathbf{F} \, \underline{\mathbf{m}}_1 \\ \underline{\mathbf{e}}_1 &\simeq \text{null}(\mathbf{F}), & \underline{\mathbf{e}}_2 &\simeq \text{null}(\mathbf{F}^{\top}) \\ \underline{\mathbf{e}}_1 &\simeq \mathbf{H}_e^{-1} \underline{\mathbf{e}}_2 & \underline{\mathbf{e}}_2 &\simeq \mathbf{H}_e \underline{\mathbf{e}}_1 \\ \underline{\mathbf{l}}_1 &\simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_2 & \underline{\mathbf{l}}_2 &\simeq \mathbf{F} \underline{\mathbf{m}}_1 \\ \underline{\mathbf{l}}_1 &\simeq \mathbf{H}_e^{\top} \underline{\mathbf{l}}_2 & \underline{\mathbf{l}}_2 &\simeq \mathbf{H}_e^{-\top} \underline{\mathbf{l}}_1 \\ \underline{\mathbf{l}}_1 &\simeq \mathbf{F}^{\top} [\underline{\mathbf{e}}_2]_{\vee} \underline{\mathbf{l}}_2 & \underline{\mathbf{l}}_2 &\simeq \mathbf{F} [\underline{\mathbf{e}}_1]_{\vee} \underline{\mathbf{l}}_1 \end{aligned}$$



- $\mathbf{F}[\mathbf{e}_1]_{\vee}$ maps lines to lines but it is not a homography
- $\mathbf{H}_e = \mathbf{Q}_2 \mathbf{Q}_1^{-1}$ is the epipolar homography \rightarrow 77 $\mathbf{H}_{e}^{-\top}$ maps epipolar lines to epipolar lines, where

$$\mathbf{H}_e = \mathbf{Q}_2 \mathbf{Q}_1^{-1} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$$

you have seen this \rightarrow 59

► Representation Theorem for Fundamental Matrices

Theorem: Every 3×3 matrix of rank 2 is a fundamental matrix.

Proof.

Converse: By the definition $\mathbf{F} = \mathbf{H}^{-\top}[\mathbf{e}_1]_{\times}$ is a 3×3 matrix of rank 2.

Direct:

- 1. let $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ be the SVD of a 3×3 matrix \mathbf{A} of rank 2; then $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, 0)$, $\lambda_1, \lambda_2 > 0$
- 2. we can write $\mathbf{D} = \mathbf{BC}$, where $\mathbf{B} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, $\mathbf{C} = \operatorname{diag}(1, 1, 0)$, $\lambda_3 = 1$ (w.l.o.g.)
- 3. then $\mathbf{A} = \mathbf{U}\mathbf{B}\mathbf{C}\mathbf{V}^{\top} = \mathbf{U}\mathbf{B}\mathbf{C}\underbrace{\mathbf{W}\mathbf{W}^{\top}}_{}\mathbf{V}^{\top}$ with \mathbf{W} rotation
- 4. we look for a rotation W that maps C to a skew-symmetric S, i.e. S = CW
- 5. then $\mathbf{W} = \begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $|\alpha| = 1$, and $\mathbf{S} = [\mathbf{s}]_{\times}$, $\mathbf{s} = (0, 0, 1)$
- we can write

$$\mathbf{A} = \mathbf{U}\mathbf{B}[\mathbf{s}]_{\times}\mathbf{W}^{\top}\mathbf{V}^{\top} = \cdots = \mathbf{U}\mathbf{B}(\mathbf{V}\mathbf{W})^{\top}[\mathbf{v}_{3}]_{\times}, \qquad \mathbf{v}_{3} - 3\text{rd column of } \mathbf{V}$$
(12)

- 7. H regular \Rightarrow A does the job of a fundamental matrix, with epipole \mathbf{v}_3 and epipolar homography H
- ullet we also got a (non-unique: $lpha=\pm 1$) decomposition formula for fundamental matrices
- it follows there is no constraint on F except the rank

П

► Representation Theorem for Essential Matrices

Theorem

Let ${\bf E}$ be a 3×3 matrix with SVD ${\bf E}={\bf U}{\bf D}{\bf V}^{\top}$. Then ${\bf E}$ is essential iff ${\bf D}\simeq {\rm diag}(1,1,0)$.

Proof.

Direct:

If ${\bf E}$ is an essential matrix, then the epipolar homography is a rotation (\rightarrow 77) and ${\bf U}{\bf B}({\bf V}{\bf W})^{\top}$ in (12) must be orthogonal, therefore ${\bf B}=\lambda {\bf I}$.

Converse:

 ${\bf E}$ is fundamental with ${\bf D}=\lambda\,{\rm diag}(1,1,0)$ then we do not need ${\bf B}$ (as if ${\bf B}=\lambda {\bf I})$ in (12) and ${\bf U}({\bf V}{\bf W})^{\top}$ is orthogonal, as required.

► Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E} = [-\mathbf{t}_{21}]_{\times} \mathbf{R}_{21} = \mathbf{R}_{21} [-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}]_{\vee}$

[H&Z, sec. 9.6]

- 1. compute SVD of $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ and verify $\mathbf{D} = \lambda \operatorname{diag}(1, 1, 0)$
- 2. if det U < 0 change signs $U \mapsto -U$, $V \mapsto -V$ the overall sign is dropped
- compute

$$\mathbf{R}_{21} = \mathbf{U} \underbrace{\begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{V}^{\top}}, \quad \mathbf{t}_{21} = -\beta \,\mathbf{u}_{3}, \qquad |\alpha| = 1, \quad \beta \neq 0$$
 (13)

Notes

- $\mathbf{v}_3 \simeq \mathbf{R}_{21}^{\top} \mathbf{t}_{21}$ by (12), hence $\mathbf{R}_{21} \mathbf{v}_3 \simeq \mathbf{t}_{21} \simeq \mathbf{u}_3$ since it must fall in left null space by $\mathbf{E} \simeq [\mathbf{u}_3] \mathbf{R}$
- \mathbf{t}_{21} is recoverable up to scale β and direction $\operatorname{sign} \beta$
- the result for \mathbf{R}_{21} is unique up to $\alpha = \pm 1$ despite non-uniqueness of SVD

• change of sign in
$$\alpha$$
 rotates the solution by 180° about \mathbf{t}_{21} since $-\mathbf{W} = \mathbf{W}^{\top}$

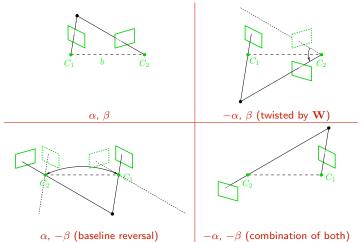
$$\mathbf{R}(\alpha) = \mathbf{U}\mathbf{W}\mathbf{V}^{\top}, \ \mathbf{R}(-\alpha) = \mathbf{U}\mathbf{W}^{\top}\mathbf{V}^{\top} \Rightarrow \mathbf{T} = \mathbf{R}(-\alpha)\mathbf{R}^{\top}(\alpha) = \cdots = \mathbf{U}\operatorname{diag}(-1, -1, 1)\mathbf{U}^{\top}$$

which is a rotation by
$$180^\circ$$
 about $\mathbf{u}_3 = \mathbf{t}_{21}$:
$$\mathbf{U}\operatorname{diag}(-1,-1,1)\mathbf{U}^\top\mathbf{u}_3 = \mathbf{U}\begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = \mathbf{u}_3$$

4 solution sets for 4 sign combinations of α , β see next for geometric interpretation

▶ Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $\mathbf{t}_{21} = -\mathbf{b}$ and \mathbf{W} rotates about the baseline \mathbf{b} .



- chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case

[H&Z, Sec. 9.6.3]

▶7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\{(x_i, y_i)\}_{i=1}^k$ of k=7 correspondences, estimate f. m. \mathbf{F} .

$$\underline{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \underline{\mathbf{x}}_i = 0, \quad i = 1, \dots, k, \quad \underline{\text{known}}: \quad \underline{\mathbf{x}}_i = (u_i^1, v_i^1, 1), \quad \underline{\mathbf{y}}_i = (u_i^2, v_i^2, 1)$$

terminology: correspondence = truth, later: match = algorithm's result; hypothesized corresp.

Solution:

$$\begin{aligned} & \underline{\mathbf{y}}_i^\top \mathbf{F} \, \underline{\mathbf{x}}_i = (\underline{\mathbf{y}}_i \underline{\mathbf{x}}_i^\top) : \mathbf{F} = \left(\operatorname{vec}(\underline{\mathbf{y}}_i \underline{\mathbf{x}}_i^\top) \right)^\top \operatorname{vec}(\mathbf{F}), \\ & \operatorname{vec}(\mathbf{F}) = \begin{bmatrix} f_{11} & f_{21} & f_{31} & \dots & f_{33} \end{bmatrix}^\top \in \mathbb{R}^9 \quad \text{column vector from matrix} \end{aligned}$$

$$\mathbf{D} = \begin{bmatrix} \left(\operatorname{vec}(\mathbf{y}_{1}\mathbf{x}_{1}^{\top}) \right)^{\top} \\ \left(\operatorname{vec}(\mathbf{y}_{2}\mathbf{x}_{2}^{\top}) \right)^{\top} \\ \left(\operatorname{vec}(\mathbf{y}_{2}\mathbf{x}_{2}^{\top}) \right)^{\top} \\ \left(\operatorname{vec}(\mathbf{y}_{3}\mathbf{x}_{3}^{\top}) \right)^{\top} \end{bmatrix} = \begin{bmatrix} u_{1}^{1}u_{1}^{2} & u_{1}^{1}v_{1}^{2} & u_{1}^{1} & u_{1}^{2}v_{1}^{1} & v_{1}^{1}v_{1}^{2} & v_{1}^{1} & u_{1}^{2} & v_{1}^{2} & 1 \\ u_{2}^{1}u_{2}^{2} & u_{2}^{1}v_{2}^{2} & u_{2}^{1} & u_{2}^{2}v_{2}^{1} & v_{2}^{1}v_{2}^{2} & v_{2}^{1} & u_{2}^{2} & v_{2}^{2} & 1 \\ u_{3}^{1}u_{3}^{2} & u_{3}^{1}v_{3}^{2} & u_{3}^{1} & u_{3}^{2}v_{3}^{1} & v_{3}^{1}v_{3}^{2} & v_{3}^{1} & u_{3}^{2} & v_{3}^{2} & 1 \\ \vdots & & & & & & \vdots \\ u_{k}^{1}u_{k}^{2} & u_{k}^{1}v_{k}^{2} & u_{k}^{1} & u_{k}^{2}v_{k}^{1} & v_{k}^{1}v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1 \end{bmatrix} \in \mathbb{R}^{k,9}$$

 $\mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}$

▶7-Point Algorithm Continued

$$\mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k,9}$$

- for k=7 we have a rank-deficient system, the null-space of ${\bf D}$ is 2-dimensional
- but we know that $\det \mathbf{F} = 0$, hence
 - 1. find a basis of the null space of D: F_1 , F_2

by SVD or QR factorization

 \rightarrow 91

 $\rightarrow 107$

2. get up to 3 real solutions for α from

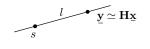
$$\det({}^{\alpha}\mathbf{F}_1 + (1-{}^{\alpha})\mathbf{F}_2) = 0$$
 cubic equation in α

- 3. get up to 3 fundamental matrices $\mathbf{F} = \alpha_i \mathbf{F}_1 + (1 \alpha_i) \mathbf{F}_2$ (check rank $\mathbf{F} = 2$)
- the result may depend on image (domain) transformations
- normalization improves conditioning
 - this gives a good starting point for the full algorithm
- dealing with mismatches need not be a part of the 7-point algorithm
- \rightarrow 108

▶ Degenerate Configurations for Fundamental Matrix Estimation

When is ${f F}$ not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

- 1. when images are related by homography
 - a) camera centers coincide $\mathbf{t}_{21} = 0$: $\mathbf{H} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$ b) camera moves but all 3D points lie in a plane (\mathbf{n}, d) : $\mathbf{H} = \mathbf{K}_2 (\mathbf{R}_{21} - \mathbf{t}_{21} \mathbf{n}^{\top} / d) \mathbf{K}_1^{-1}$
 - in both cases: epipolar geometry is not defined
 - We do get a solution from the 7-point algorithm but it has the form of $\mathbf{F} = [\mathbf{s}] \setminus \mathbf{H}$



- given (arbitrary) s
- and correspondence $x \leftrightarrow y$ • y is the image of x: $\mathbf{y} \simeq \mathbf{H} \mathbf{\underline{x}}$
- a necessary condition: $y \in l$, $l \simeq s \times Hx$

$$0 = \underline{\mathbf{y}}^{\top}(\underline{\mathbf{s}} \times \mathbf{H}\underline{\mathbf{x}}) = \underline{\mathbf{y}}^{\top}[\underline{\mathbf{s}}]_{\times}\mathbf{H}\underline{\mathbf{x}} \quad \text{for any } \underline{\mathbf{x}},\underline{\mathbf{s}} \ (!)$$

note that $[\mathbf{s}]_{\vee} \mathbf{H} \simeq \mathbf{H}' [\mathbf{s}']_{\vee} \rightarrow 75$

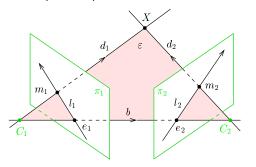
- 2. both camera centers and all 3D points lie on a ruled quadric hyperboloid of one sheet, cones, cylinders, two planes
 - ullet there are 3 solutions for ${f F}$

notes

- estimation of ${\bf E}$ can deal with planes: $[{\bf s}]_{\times}{\bf H}$ is essential matrix iff ${\bf s}=\lambda t_{21}$ (see Case 1.b)
- a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity



$\underline{\mathbf{e}}_2 \times \underline{\mathbf{m}}_2 \stackrel{+}{\sim} \mathbf{F} \, \underline{\mathbf{m}}_1$

notation: $\underline{\mathbf{m}} \stackrel{+}{\sim} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}} = \lambda \underline{\mathbf{n}}$, $\lambda > 0$

- we can read the constraint as $\underline{\mathbf{e}}_2 \times \underline{\mathbf{m}}_2 \stackrel{+}{\sim} \mathbf{H}_e^{-\top} (\underline{\mathbf{e}}_1 \times \underline{\mathbf{m}}_1)$
- ullet note that the constraint is not invariant to the change of either sign of ${f m}_i$
- all 7 correspondence in 7-point alg. must have the same sign

this may help reject some wrong matches, see \rightarrow 108 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive this is called chirality constraint

see later

▶5-Point Algorithm for Relative Camera Orientation

Problem: Given $\{m_i, m_i'\}_{i=1}^5$ corresponding image points and calibration matrix \mathbf{K} , recover the camera motion \mathbf{R} , \mathbf{t} .

Obs:

- 1. **E** 8 numbers
- 2. ${f R}$ 3DOF, ${f t}$ 2DOF only, in total 5 DOF \to we need 8-5=3 constraints on ${f E}$
- 3. **E** essential iff it has two equal singular values and the third is zero $\rightarrow 80$

This gives an equation system:

$$\mathbf{\underline{v}}_i^{\mathsf{T}} \mathbf{E} \, \mathbf{\underline{v}}_i' = 0$$
 5 linear constraints $(\mathbf{\underline{v}} \simeq \mathbf{K}^{-1} \mathbf{\underline{m}})$ det $\mathbf{E} = 0$ 1 cubic constraint

$$\mathbf{E}\mathbf{E}^{\mathsf{T}}\mathbf{E} - \frac{1}{2}\operatorname{tr}(\mathbf{E}\mathbf{E}^{\mathsf{T}})\mathbf{E} = \mathbf{0}$$
 9 cubic constraints, 2 independent
® P1; 1pt: verify this equation from $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$, $\mathbf{D} = \lambda \operatorname{diag}(1, 1, 0)$

- 1. estimate **E** by SVD from $\mathbf{v}_i^{\mathsf{T}} \mathbf{E} \mathbf{v}_i' = 0$ by the null-space method 4D null space
- 2. this gives $\mathbf{E} = x\mathbf{E}_1 + y\mathbf{E}_2 + z\mathbf{E}_3 + \mathbf{E}_4$
- 3. at most 10 (complex) solutions for x, y, z from the cubic constraints
- when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views
 or by chirality constraint (→82) unless all 3D points are closer to one camera
 - 6-point problem for unknown f

3D Computer Vision: IV. Computing with a Camera Pair (p. 87/189) 990

- resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
- R. Šára. CMP: rev. 6-Nov-2018

[Kukelova et al. BMVC 2008]

