Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	62
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	66
relative orientation	3 world-world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{t}	69

- camera resection and exterior orientation are similar problems in a sense:
- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- relative orientation involves no camera (see next)
- more problems to come

The Relative Orientation Problem

Problem：Given two point triples $\left(X_{1}, X_{2}, X_{3}\right)$ and $\left(Y_{1}, Y_{2}, Y_{3}\right)$ in a general position in \mathbf{R}^{3} such that the correspondence $X_{i} \leftrightarrow Y_{i}$ is known，determine the relative orientation（ \mathbf{R}, \mathbf{t} ） that maps \mathbf{X}_{i} to \mathbf{Y}_{i} ，i．e．

$$
\mathbf{Y}_{i}=\mathbf{R} \mathbf{X}_{i}+\mathrm{t}, \quad i=1,2,3
$$

Applies to：
－3D scanners
－partial reconstructions from different viewpoints
Obs：Let $\overline{\mathbf{X}}=\frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\overline{\mathbf{Y}}$ ．Then

$$
\overline{\mathbf{Y}}=\mathbf{R} \overline{\mathbf{X}}+\mathbf{t}
$$

Therefore

$$
\mathbf{Z}_{i} \stackrel{\text { def }}{=}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)=\mathbf{R}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \stackrel{\text { def }}{=} \mathbf{R} \mathbf{W}_{i}
$$

If all dot products are equal， $\mathbf{Z}_{i}^{\top} \mathbf{Z}_{j}=\mathbf{W}_{i}^{\top} \mathbf{W}_{j}$ for $i, j=1,2,3$ ，we have

$$
\mathbf{R}^{*}=\left[\begin{array}{lll}
\mathbf{W}_{1} & \mathbf{W}_{2} & \mathbf{W}_{3}
\end{array}\right]^{-1}\left[\begin{array}{lll}
\mathbf{Z}_{1} & \mathbf{Z}_{2} & \mathbf{Z}_{3}
\end{array}\right]
$$

Otherwise（in practice）we setup a minimization problem

$$
\mathbf{R}^{*}=\arg \min _{\mathbf{R}} \sum_{i}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2} \quad \text { s.t. } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
$$

$$
\min _{\mathbf{R}} \sum_{i}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2}=\min _{\mathbf{R}} \sum_{i}\left(\left\|\mathbf{Z}_{i}\right\|^{2}-2 \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}+\left\|\mathbf{W}_{i}\right\|^{2}\right)=\cdots=\max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}
$$

cont'd (What is Linear Algebra Telling Us?)

Obs 1: Let $\mathbf{A}: \mathbf{B}=\sum_{i, j} a_{i j} b_{i j}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$
\mathbf{A}: \mathbf{B}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{B}\right)
$$

Obs 2:

$$
\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right): \mathbf{R}
$$

Obs 3: (cyclic property for matrix trace)

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{B C A})
$$

Let the SVD be

$$
\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \stackrel{\text { def }}{=} \mathbf{M}=\mathbf{U D} \mathbf{V}^{\top}
$$

Then

$$
\mathbf{R}: \mathbf{M}=\mathbf{R}:\left(\mathbf{U D V}^{\top}\right)=\operatorname{tr}\left(\mathbf{R}^{\top} \mathbf{U D} \mathbf{V}^{\top}\right)=\operatorname{tr}\left(\mathbf{V}^{\top} \mathbf{R}^{\top} \mathbf{U D}\right)=\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

cont'd: The Algorithm

We are solving

$$
\mathbf{R}^{*}=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\arg \max _{\mathbf{R}}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

It follows that $\mathbf{U}^{\top} \mathbf{R V}$ must be (1) diagonal, (2) orthogonal, (3) positive definite matrix. Since \mathbf{U}, \mathbf{V} are orthogonal matrices then the solution to the problem is $\mathbf{R}^{*}=\mathbf{U S V}^{\top}$, where \mathbf{S} is diagonal and orthogonal, i.e. one of

$$
\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)
$$

whichever gives $\left(\mathbf{R}^{*}\right)^{\top} \mathbf{R}^{*}=\mathbf{I}$

Alg:

1. Compute matrix $\mathbf{M}=\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$.
2. Compute SVD M $=\mathbf{U D V}{ }^{\top}$.
3. Compute all $\mathbf{R}_{k}=\mathbf{U} \mathbf{S}_{k} \mathbf{V}^{\top}$ that give $\mathbf{R}_{k}^{\top} \mathbf{R}_{k}=\mathbf{I}$.
4. Compute $\mathbf{t}_{k}=\overline{\mathbf{Y}}-\mathbf{R}_{k} \overline{\mathbf{X}}$.

- The algorithm can be used for more than 3 points
- The P3P problem is very similar but not identical

Module IV

Computing with a Camera Pair

4.1) Camera Motions Inducing Epipolar Geometry
4.2 Estimating Fundamental Matrix from 7 Correspondences
4.3 Estimating Essential Matrix from 5 Correspondences

444 Triangulation: 3D Point Position from a Pair of Corresponding Points

Abstract

covered by

[1] [H\&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633
additional references
宔
H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293 (5828):133-135, 1981.

Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Description

- baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

- epipole $e_{i} \in \pi_{i}$ is the image of C_{j} :

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

- $l_{i} \in \pi_{i}$ is the image of epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

- l_{j} is the epipolar line in image π_{j} induced by m_{i} in image π_{i}

Epipolar constraint: corresponding d_{2}, b, d_{1} are coplanar
a necessary condition $\rightarrow 86$

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right]=\mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right] \quad i=1,2 \quad \rightarrow 31
$$

Epipolar Geometry Example: Forward Motion

image 1

- red: correspondences
- green: epipolar line pairs per correspondence

image 2
click on the image to see their IDs same ID in both images

How high was the camera above the floor?

Cross Products and Maps by Skew-Symmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=[\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 skew-symmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

1. $[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times}$
the general antisymmetry property
2. \mathbf{A} is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=0$ for all \mathbf{x} skew-sym mtx generalizes cross products
3. $[\mathbf{b}]_{\times}^{3}=-\|\mathbf{b}\|^{2} \cdot[\mathbf{b}]_{\times}$
4. $\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\|$ Frobenius norm $\left(\|\mathbf{A}\|_{F}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}\right)$
5. $[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0}$
6. $\operatorname{rank}[\mathbf{b}]_{\times}=2$ iff $\|\mathbf{b}\|>0$
check minors of $[\mathbf{b}]_{\times}$
7. eigenvalues of $[\mathbf{b}]_{\times}$are $(0, \lambda,-\lambda)$
8. for any regular $\mathbf{B}: \mathbf{B}^{\top}[\mathbf{B z}]_{\times} \mathbf{B}=\operatorname{det} \mathbf{B}[\mathbf{z}]_{\times} \quad$ follows from the factoring on $\rightarrow 38$
9. in particular: if $\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}$ then $\mathbf{R}^{\top}[\mathbf{R b}]_{\times} \mathbf{R}=[\mathbf{b}]_{\times}$

- note that if \mathbf{R}_{b} is rotation about \mathbf{b} then $\mathbf{R}_{b} \mathbf{b}=\mathbf{b}$
- note $[\mathbf{b}]_{\times}$is not a homography; it is not a rotation matrix it is a logarithm of a rotation mtx

Expressing Epipolar Constraint Algebraically

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right], i=1,2
$$

\mathbf{R}_{21} - relative camera rotation, $\mathbf{R}_{21}=\mathbf{R}_{2} \mathbf{R}_{1}^{\top}$
\mathbf{t}_{21} - relative camera translation, $\mathbf{t}_{21}=\mathbf{t}_{2}-\mathbf{R}_{21} \mathbf{t}_{1}=-\mathbf{R}_{2} \mathbf{b} \rightarrow 73$
b - baseline vector (world coordinate system)
remember: $\mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}=-\mathbf{R}^{\top} \mathbf{t} \quad \rightarrow 32$ and 34

Epipolar constraint $\quad \underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1}=0 \quad$ is a point-line incidence constraint

- point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1}$
- point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
- $\mathbf{F e}_{1}=\mathbf{F}^{\top} \underline{\mathbf{e}}_{2}=\mathbf{0}$ (non-trivially)
- all epipolars meet at the epipole

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{Q}_{1} \mathbf{C}_{2}+\mathbf{q}_{1}=\mathbf{Q}_{1} \mathbf{C}_{2}-\mathbf{Q}_{1} \mathbf{C}_{1}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}=-\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{2}^{\top} \mathbf{t}_{21}=-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21}
$$

$$
\mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}\right]_{\times}=\stackrel{1}{\circledast} \simeq \mathbf{K}_{2}^{-\top}\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21} \mathbf{K}_{1}^{-1} \quad \text { fundamental }
$$

$$
\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\underbrace{\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 2 }} \mathbf{R}_{21}=\mathbf{R}_{21} \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 1 }}=\mathbf{R}_{21}\left[-\mathbf{R}_{21} \mathbf{t}_{21}\right]_{\times} \text {essential }
$$

- The Structure and the Key Properties of the Fundamental Matrix

1. E captures relative camera pose only
[Longuet-Higgins 1981] (the change of the world coordinate system does not change \mathbf{E})

$$
\left[\begin{array}{ll}
\mathbf{R}_{i}^{\prime} & \mathbf{t}_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right] \cdot\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} \mathbf{R} & \mathbf{R}_{i} \mathbf{t}+\mathbf{t}_{i}
\end{array}\right],
$$

then

$$
\mathbf{R}_{21}^{\prime}=\mathbf{R}_{2}^{\prime} \mathbf{R}_{1}^{\prime \top}=\cdots=\mathbf{R}_{21} \quad \quad \mathbf{t}_{21}^{\prime}=\mathbf{t}_{2}^{\prime}-\mathbf{R}_{21}^{\prime} \mathbf{t}_{1}^{\prime}=\cdots=\mathbf{t}_{21}
$$

2. the translation length \mathbf{t}_{21} is lost since \mathbf{E} is homogeneous
3. \mathbf{F} maps points to lines and it is not a homography
4. \mathbf{H}_{e} maps epipoles to epipoles, $\mathbf{H}_{e}^{-\top}$ epipolar lines to epipolar lines: $\underline{l}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{l}_{1}$

- replacement for $\mathbf{H}_{e}^{-\top}$ for epipolar line map: $\underline{\mathbf{l}}_{2} \simeq \mathbf{F}\left[\mathbf{e}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}$
- proof by point/line 'transmutation' (left)
- point $\underline{\mathbf{e}}_{1}$ does not lie on line $\underline{\mathbf{e}}_{1}$ (dashed): $\underline{\mathbf{e}}_{1}^{\top} \underline{\mathbf{e}}_{1} \neq 0$
- $\mathbf{F}\left[\mathbf{e}_{1}\right]_{\times}$is not a homography, unlike $\mathbf{H}_{e}^{-\top}$ but it does the same job for epipolar line mapping

Thank You

