»Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown | slide
camera resection | 6 world—img correspondences {(Xi, mi)}le P 62
exterior orientation | K, 3 world-img correspondences {(Xi, mi)}?zl R, C 66
relative orientation | 3 world-world correspondences {(Xi, Yi)}f:l R, t 69

e camera resection and exterior orientation are similar problems in a sense:

e we do resectioning when our camera is uncalibrated
e we do orientation when our camera is calibrated

e relative orientation involves no camera (see next)

e more problems to come
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The Relative Orientation Problem

Problem: Given two point triples (X1, X2, X3) and (Y1, Y2,Y3) in a general position in R?
such that the correspondence X; <+ Y; is known, determine the relative orientation (R, t)
that maps X; to Y, i.e.
Y, =RX;+t, i=1,23.

Applies to:

e 3D scanners

e partial reconstructions from different viewpoints
Obs: Let X = %ZZ X; and analogically for Y. Then

Y =RX +t.

Therefore ~ ~
Z, € (Y- Y)=R(X; - X) ¥RW,

If all dot products are equal, Z] Z; = W] W, for i,j = 1,2,3, we have
R* = [Wl W2 W3}71 [Zl Z2 ZS]
Otherwise (in practice) we setup a minimization problem

* . o n2 T —
R farngltn;HZq, RW;||° st. R R=1

; o 2 = mi 2 _ o7 T ) 2 = ... — T )
min Y | Zi-RW.| m&nZ(HZzH 27, RW1—|—||WZH) max Y 2] RW,
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cont'd (What is Linear Algebra Telling Us?)

Obs 1: Let A: B =}, . ai;bi; be the dot-product (Frobenius inner product) over real
matrices. Then
A:B=tr(A"B)

Obs 2:
Z;RW, = (Z;W,): R

Obs 3: (cyclic property for matrix trace)
tr(ABC) = tr(BCA)
Let the SVD be
S z,w] € M=UDV'
Then

R:M=R:(UDV')=tr(R"UDV')=tr(V'R'UD) = (U RV):D
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cont'd: The Algorithm

We are solving

R =arg m}%XZ_ Z; RW; = arg max (U RV) :D

It follows that UT RV must be (1) diagonal, (2) orthogonal, (3) positive definite matrix.
Since U, V are orthogonal matrices then the solution to the problem is R* = USV T,
where S is diagonal and orthogonal, i.e. one of

+diag(1,1,1), =+diag(l,-1,-1), =+diag(-1,1,—1), =£diag(—1,—1,1)
whichever gives (R*)TR* =1

Alg:
1. Compute matrix M = 3", Z; W, .
2. Compute SVD M = UDV .
3. Compute all Ry = US, V' that give R/ Ry, = 1.
4. Compute tx = Y - R, X.

® The algorithm can be used for more than 3 points

e The P3P problem is very similar but not identical
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Module [V

Computing with a Camera Pair

@® Camera Motions Inducing Epipolar Geometry

@®Estimating Fundamental Matrix from 7 Correspondences
@®Estimating Essential Matrix from 5 Correspondences

@ Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by
[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

@ H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293
(5828):133-135, 1981
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»Geometric Model of a Camera Pair

Epipolar geometry:

e brings constraints necessary for inter-image matching

e its parametric form encapsulates information about the relative pose of two cameras
Description

® baseline b joins projection centers Cp, C2

b=Cy—-Cy
® epipole e; € m; is the image of Cj:
e1 ~P1C2, e ~P2C
e |, € m; is the image of epipolar plane

e=(C2,X,C1)

® [; is the epipolar line in image 7; induced
two-camera setup by m; in image m;

Epipolar constraint: corresponding d2, b, d1 are coplanar a necessary condition —86
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Epipolar Geometry Example: Forward Motion

image 1 image 2
e red: correspondences click on the image to see their IDs
e green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

o~
movement Il

2 1
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»Cross Products and Maps by Skew-Symmetric 3 x 3 Matrices

e There is an equivalence b x m = [b], m, where [b], is

a 3 x 3 skew-symmetric matrix

0 —bs b2 by
[bl, = | b3 0 —bi, assuming b = [bs
—by b1 0 bs
Some properties
T .
1. [b]>< = —[b}>< the general antisymmetry property
2. A is skew-symmetric iff x Ax =0 for all x skew-sym mtx generalizes cross products
3. [b]} = —|b]* - [b],
4. H[b]>< ”F = \/i”b” Frobenius norm (||A||F = \/tr(ATA) = \/Zi,j |a¢j|2)
5. [b],b=0
6. rank [b], =2 iff ||b]| >0 check minors of [b],,
7. eigenvalues of [b], are (0, A, —))
8. for any regular B: BT [Bz], B =detB|z], follows from the factoring on —38
9. in particular: if RR" =1 then R"[Rb], R = [b],

e note that if Ry is rotation about b then Ryb = b

e note [b], is not a homography; it is not a rotation matrix

it is a logarithm of a rotation mtx
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»Expressing Epipolar Constraint Algebraically

P = [Qi qi} =K; [Ri ti]7 i=1,2

R, — relative camera rotation, Ra; = RZRIT

to1 — relative camera translation, ta; = t2 — R21t1 = —R2b —73

b - baseline vector (world coordinate system)

‘ ’ remember: C = —-Q 'q=—-R'"t —32 and 34

0=d; p. ~ (Q;'m)" QL =m; Q; ' Q(e1 xm)=my (Q; Q [e1],) mu
~— —— N~ —_—

normal of € optical ray  optical plane

image of € in 72 fundamental matrix F

Epipolar constraint mJ Fm; =0 is a point-line incidence constraint
® point my is incident on epipolar line 15 ~ Fmy

e Fe; = F ey = 0 (non-trivially)
e point my is incident on epipolar line I; ~ F"'mjy

o all epipolars meet at the epipole
e ~QCr+q; =Q,C:—Q,Ci =KiR,b= ~KiRiR; t21 = ~KiRg tn

_ _ ® 1 _ _
F=Q; Q] [e], =Q; Q] [KiRib], = -+ ~K5  [~tn] RoiK;' fundamental

E =[-t21],Ro1 = [R2b] R2; =Ra1[Rib], = Rai[-Raitai],

essential

N——
baseline in Cam 2 baseline in Cam 1
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» The Structure and the Key Properties of the Fundamental Matrix

left epipole right epipole
—1 \—=T -T T —75 ¢ -T -1
F= ( QZQl ) [el]x = K2 R21K1 [el ]>< = [I_Ieel]xHe = K2 [_t21]><R21 Kl
~—— ——

epipolar homography H¢ H;T essential matrix E
1. E captures relative camera pose only [Longuet-Higgins 1981]
(the change of the world coordinate system does not change E)

R, t]=[Ri t]- Lf& ﬂ = [RR Rit+t],

P Ry SRR == Ra =t Ryt ==t
2. the translation length t2; is lost since E is homogeneous

3. F maps points to lines and it is not a homography

4. H. maps epipoles to epipoles, H. T epipolar lines to epipolar lines: 1, ~ H. "1,

e replacement for H; T for epipolar line map: I ~ Fle1], It
e proof by point/line ‘transmutation’ (left)
e point e; does not lie on line e; (dashed): girg] #0

e Flei], is not a homography, unlike HZ T but it does the
same job for epipolar line mapping
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Thank You
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