Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

1. in this picture we are looking 'down the street'
2. right-handed canonical coordinate system (x, y, z) with unit vectors $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$
3. origin $=$ center of projection C
4. image plane π at unit distance from C
5. optical axis O is perpendicular to π
6. principal point x_{p} : intersection of O and π
7. perspective camera is given by C and π

projected point in the natural image coordinate system:

$$
\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

- Natural and Canonical Image Coordinate Systems

$$
\begin{aligned}
& \text { projected point in canonical camera }(z \neq 0) \\
& \qquad\left(x^{\prime}, y^{\prime}, 1\right)=\left(\frac{x}{z}, \frac{y}{z}, 1\right)=\frac{1}{z}(x, y, z) \simeq \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}_{0}} \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
\end{aligned}
$$

projected point in scanned image

scale by f and translate to $\left(u_{0}, v_{0}\right)$

- 'calibration' matrix \mathbf{K} transforms canonical \mathbf{P}_{0} to standard perspective camera \mathbf{P}

-Computing with Perspective Camera Projection Matrix

$$
\begin{gathered}
\underline{\mathbf{m}}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \simeq\left[\begin{array}{c}
f x+u_{0} z \\
f y+v_{0} z \\
z
\end{array}\right] \quad \underbrace{\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right]}_{(\mathrm{a})} \\
\frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \quad \text { when } \quad m_{3} \neq 0
\end{gathered}
$$

f - 'focal length' - converts length ratios to pixels, $\quad[f]=\mathrm{px}, \quad f>0$
$\left(u_{0}, v_{0}\right)$ - principal point in pixels

Perspective Camera:

1. dimension reduction
2. nonlinear unit change $1 \mapsto 1 \cdot z / f$, see (a)
for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3. $m_{3}=0$ represents points at infinity in image plane π
i.e. points with $z=0$

Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

\mathbf{R} - camera rotation matrix
world orientation in the camera coordinate frame \mathcal{F}_{c}
t - camera translation vector
 world origin in the camera coordinate frame \mathcal{F}_{c}

$$
\mathbf{P} \underline{\mathbf{X}}_{c}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}
\mathbf{X}_{w} \\
1
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \underline{\mathbf{X}}_{w}
$$

\mathbf{P}_{0} (a $3 \times 4 \mathrm{mtx}$) selects the first 3 rows of \mathbf{T} and discards the last row

- \mathbf{R} is rotation, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$
$\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

C - camera position in the world reference frame \mathcal{F}_{w}
\mathbf{r}_{3}^{\top} - optical axis in the world reference frame \mathcal{F}_{w}
third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{\mathbf{t}}[=-\mathbf{R C} \mathbf{C}$

- we can save some conversion and computation by noting that $\mathbf{K R}[\mathbf{I} \quad-\mathbf{C}] \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

Changing the Inner（Image）Reference Frame

The general form of calibration matrix \mathbf{K} includes
－skew angle θ of the digitization raster
－pixel aspect ratio a

$$
\begin{aligned}
& \mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \text { units: }[f]=\mathrm{px},\left[u_{0}\right]=\mathrm{px},\left[v_{0}\right]=\mathrm{px},[a]=1
\end{aligned}
$$

\circledast H1；2pt：Verify this K．Hints：（1）Map first by skew，then by sampling scale $f, a f$ ，then shift by u_{0}, v_{0} ；（2）Skew：express point \mathbf{x} as $\mathbf{x}=u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u \mathbf{e}_{u}+v \mathbf{e}_{v}, \mathbf{e}_{u}, \mathbf{e}_{v}$ etc．are unit basis vectors， \mathbf{K} maps from an orthogonal system to a skewed system $\left[w^{\prime} u^{\prime}, w^{\prime} v^{\prime}, w^{\prime}\right]^{\top}=\mathbf{K}[u, v, 1]^{\top} ; \quad$ deadline LD +2 wk
general finite perspective camera has 11 parameters：
－ 5 intrinsic parameters：$f, u_{0}, v_{0}, a, \theta$
finite camera： $\operatorname{det} \mathbf{K} \neq 0$
－ 6 extrinsic parameters： $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \quad \text { a recipe for filling } \mathbf{P}
$$

Representation Theorem：The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix \mathbf{Q} non－singular．

-Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$\mathbf{Q} \in \mathbb{R}^{3,3}$
$\mathbf{K} \in \mathbb{R}^{3,3}$
$\mathbf{R} \in \mathbb{R}^{3,3}$
full rank
(if finite perspective camera)
upper triangular with positive diagonal entries rotation: $\quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$ and $\operatorname{det} \mathbf{R}=+1$

1. $\left[\begin{array}{ll}\mathbf{Q} & \mathbf{q}\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]=\left[\begin{array}{ll}\mathbf{K R} & \mathbf{K t}\end{array}\right]$
2. RQ decomposition of $\mathbf{Q}=\mathbf{K R}$ using three Givens rotations

$$
\mathbf{K}=\mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}}
$$

$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g. (see next slide for derivation details)

$$
\mathbf{R}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right] \text { gives } \quad \begin{gathered}
c^{2}+s^{2}=1 \\
0=k_{32}=c q_{32}+s q_{33}
\end{gathered} \Rightarrow c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{-q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}
$$

\circledast P1; 1pt: Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back; discuss numerical errors

- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive 'thin' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 2013, sec. 5.2]
|RQ Decomposition Step

```
Q = Array [ q q#1,#2 &, {3, 3}];
R32 ={{1, 0, 0},{0,c,-s},{0,s,c}};R32 // MatrixForm
```

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$

```
Q1 = Q.R32 ; Q1 // MatrixForm
```

$\left(\begin{array}{lll}q_{1,1} & c & q_{1,2}+s q_{1,3}-s q_{1,2}+c q_{1,3} \\ q_{2,1} & c & q_{2,2}+s q_{2,3}-s q_{2,2}+c q_{2,3} \\ q_{3,1} & c & q_{3,2}+s q_{3,3}-s q_{3,2}+c \\ q_{3,3}\end{array}\right)$

```
s1 = Solve [{Q1 [[3]][[2]]=0, c^^2 + s^^2=1}, {c, s}][[2]]
```


Q1 /. s1 // Simplify // MatrixForm

$$
\left(\begin{array}{cc}
q_{1,1} \frac{-q_{1,3} q_{3,2}+q_{1,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{1,2} q_{3,2}+q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\
q_{2,1} \frac{-q_{2,3} q_{3,2}+q_{2,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{2,2} q_{3,2}+q_{2,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\
q_{3,1} & 0
\end{array}\right.
$$

-Center of Projection

Observation: finite \mathbf{P} has a non-trivial right null-space

Theorem

Let \mathbf{P} be a camera and let there be $\underline{\mathbf{B}} \neq \mathbf{0}$ s.t. $\mathbf{P} \underline{\mathbf{B}}=\mathbf{0}$. Then $\underline{\mathbf{B}}$ is equivalent to the projection center $\underline{\mathbf{C}}$ (homogeneous, in world coordinate frame).

Proof.

1. Consider spatial line $A B$ (B is given). We can write

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2. it projects to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}}
$$

- the entire line projects to a single point \Rightarrow it must pass through the optical center of \mathbf{P}
- this holds for all choices of $A \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$, where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped
Matlab: C_homo $=$ null (P); or $C=-Q \backslash q$;

－Optical Ray

Optical ray：Spatial line that projects to a single image point．
1．consider line
d unit line direction vector，$\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$ ，Cartesian representation

$$
\mathbf{X}(\lambda)=\mathbf{C}+\lambda \mathbf{d}
$$

2．the projection of the（finite）point $X(\lambda)$ is

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}(\lambda) \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{d} \\
0
\end{array}\right]
\end{aligned}
$$

\ldots which is also the image of a point at infinity in \mathbb{P}^{3}
－optical ray line corresponding to image point m is the set

$$
\mathbf{X}(\lambda)=\mathbf{C}+(\lambda \mathbf{Q})^{-1} \underline{\mathbf{m}}, \quad \lambda \in \mathbb{R}
$$

－optical ray direction may be represented by a point at infinity $(\mathbf{d}, 0)$ in \mathbb{P}^{3}
－in world coordinate frame

-Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points on a line parallel to π project to line at infinity in π :

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2. therefore the set of points X is parallel to π iff

$$
\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0
$$

3. this is a plane with $\pm \mathbf{q}_{3}$ as the normal vector
4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$)

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

$$
\text { if } \mathbf{P} \mapsto \lambda \mathbf{P} \text { then } \operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad \text { and } \quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}
$$

- the axis is expressed in world coordinate frame

－Principal Point

Principal point：The intersection of image plane and the optical axis
1．as we saw， \mathbf{q}_{3} is the directional vector of optical axis
2．we take point at infinity on the optical axis that must project to principal point m_{0}

3．then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

－principal point is also the center of radial distortion

-Optical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X}-\mathbf{C})}_{\rightarrow 30}=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every X in plane ρ
optical plane is given by n :

$$
\rho \simeq \mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0
$$

Cross－Check：Optical Ray as Optical Plane Intersection

$\begin{array}{rlrl}\text { optical plane normal given by } n & \mathbf{p} & =\mathbf{Q}^{\top} \underline{\mathbf{n}} \\ \text { optical plane normal given by } n^{\prime} & \mathbf{p}^{\prime} & =\mathbf{Q}^{\top} \underline{\mathbf{n}}\end{array}$
$\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}$

Summary: Optical Center, Ray, Axis, Plane

General finite camera

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \\
& \underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P}) \\
& \mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}} \\
& \operatorname{det}(\mathbf{Q}) \mathbf{q}_{3} \\
& \text { Q } \mathbf{q}_{3} \\
& \boldsymbol{\rho}=\mathbf{P}^{\top} \underline{\mathbf{n}} \\
& \mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \text { R } \\
& \text { t }
\end{aligned}
$$

Thank You

