How To Generate Random Samples from a Complex Distribution?

- red: probability density function $\pi(x)$ of the toy distribution on the unit interval target distribution

$$
\begin{gathered}
\pi(x)=\sum_{i=1}^{4} \gamma_{i} \operatorname{Be}\left(x ; \alpha_{i}, \beta_{i}\right), \quad \sum_{i=1}^{4} \gamma_{i}=1, \gamma_{i} \geq 0 \\
\operatorname{Be}(x ; \alpha, \beta)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1}
\end{gathered}
$$

- alg. for generating samples from $\operatorname{Be}(x ; \alpha, \beta)$ is known
- \Rightarrow we can generate samples from $\pi(x)$ how?
- suppose we cannot sample from $\pi(x)$ but we can sample from some 'simple' distribution $q\left(x \mid x_{0}\right)$, given the last sample x_{0} (blue) proposal distribution

$$
q\left(x \mid x_{0}\right)= \begin{cases}\mathrm{U}_{0,1}(x) & \text { (independent) uniform sampling } \\ \operatorname{Be}\left(x ; \frac{x_{0}}{T}+1, \frac{1-x_{0}}{T}+1\right) & \text { 'beta' diffusion (crawler) } T \text { - temperature } \\ \pi(x) & \text { (independent) Gibbs sampler }\end{cases}
$$

- note we have unified all the random sampling methods from the previous slide
- how to redistribute proposal samples $q\left(x \mid x_{0}\right)$ to target distribution $\pi(x)$ samples?

-Putting Some Clothes Back: RANSAC [Fischler \& Bolles 1981]

1. $\underline{\text { primitives }}=$ elementary measurements

- points in line fitting
- matches in epipolar geometry estimation

2. configuration $=\underline{s \text {-tuple of primitives } \quad \text { minimal subsets necessary for parameter estimate }}$

the minimization will be over a discrete set:

- of point pairs in line fitting (left)
- of match 7-tuples in epipolar geometry estimation

3. proposal distribution $q(\cdot)$ is then given by the empirical distribution of s-tuples:
a) propose s-tuple from data independently $q\left(S \mid C_{t}\right)=q(S)$
i) q uniform $q(S)=\binom{m n}{s}^{-1} \quad \operatorname{MAPSAC}(p(S)$ includes the prior $)$
ii) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)
b) solve the minimal geometric problem \mapsto parameter proposal

- pairs of points define line distribution from $p(\mathbf{n} \mid X)$ (left)
- random correspondence tuples drawn uniformly propose samples of \mathbf{F} from a data-driven distribution $q(\mathbf{F} \mid M)$

4. local optimization from promising proposals
5. stopping based on the probability of mode-hitting

-RANSAC with Local Optimization and Early Stopping

1. initialize the best sample as empty $C_{\text {best }}:=\emptyset$ and time $t:=0$
2. estimate the number of needed proposals as $N:=\binom{n}{s} n-$ No. of primitives, s - minimal sample size
3. while $t \leq N$:
a) propose a minimal random sample S of size s from $q(S)$

b) if $\pi(S)>\pi\left(C_{\text {best }}\right)$ then
i) update the best sample $C_{\text {best }}:=S \quad \pi(S)$ marginalized as in (26); $\pi(S)$ includes a prior \Rightarrow MAP
ii) threshold-out inliers using e_{T} from (27)...

iii) start local optimization from the inliers of $C_{\text {best }}$ LM optimization with robustified $(\rightarrow 113)$ Sampson error possibly weighted by posterior $\pi\left(m_{i j}\right)$ [Chum et al. 2003]
 $\mathrm{LO}\left(C_{\text {best }}\right)$
iv) update $C_{\text {best }}$, update inliers using (27), re-estimate N from inlier counts $\quad \rightarrow 123$ for derivation

$$
N=\frac{\log (1-P)}{\log \left(1-\varepsilon^{s}\right)}, \quad \varepsilon=\frac{\left|\operatorname{inliers}\left(C_{\mathrm{best}}\right)\right|}{m n}
$$

c) $t:=t+1$
4. output $C_{\text {best }}$

- see ©MPV course for RANSAC details
see also [Fischler \& Bolles 1981], [25 years of RANSAC]

