
How To Generate Random Samples from a Complex Distribution?
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target (red) and scaled proposal (blue) distributions

• red: probability density function π(x) of the toy
distribution on the unit interval target distribution

π(x) =

4∑
i=1

γi Be(x;αi, βi),
4∑
i=1

γi = 1, γi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1

• alg. for generating samples from Be(x;α, β) is known

• ⇒ we can generate samples from π(x) how?

• suppose we cannot sample from π(x) but we can sample from some ‘simple’
distribution q(x | x0), given the last sample x0 (blue) proposal distribution

q(x | x0) =


U0,1(x) (independent) uniform sampling

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

π(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods from the previous slide

• how to redistribute proposal samples q(x | x0) to target distribution π(x) samples?
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IPutting Some Clothes Back: RANSAC [Fischler & Bolles 1981]

1. primitives = elementary measurements
• points in line fitting
• matches in epipolar geometry estimation

2. configuration = s-tuple of primitives minimal subsets necessary for parameter estimate

S

the minimization will be over a discrete set:

• of point pairs in line fitting (left)

• of match 7-tuples in epipolar geometry estimation

3. proposal distribution q(·) is then given by the empirical distribution of s-tuples:
a) propose s-tuple from data independently q(S | Ct) = q(S)

i) q uniform q(S) =
(mn
s

)−1
MAPSAC (p(S) includes the prior)

ii) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

b) solve the minimal geometric problem 7→ parameter proposal

• pairs of points define line distribution from p(n | X) (left)

• random correspondence tuples drawn uniformly propose
samples of F from a data-driven distribution q(F |M)

4. local optimization from promising proposals

5. stopping based on the probability of mode-hitting →123

3D Computer Vision: V. Optimization for 3D Vision (p. 121/189) R. Šára, CMP; rev. 27–Nov–2018



IRANSAC with Local Optimization and Early Stopping

1. initialize the best sample as empty Cbest := ∅ and time t := 0

2. estimate the number of needed proposals as N :=
(n
s

)
n – No. of primitives, s – minimal sample size

3. while t ≤ N :

a) propose a minimal random sample S of size s from q(S)
S

b) if π(S) > π(Cbest) then

i) update the best sample Cbest := S π(S) marginalized as in (26); π(S) includes a prior⇒ MAP

ii) threshold-out inliers using eT from (27)

2eT
S

iii) start local optimization from the inliers of Cbest LM optimization with robustified (→113) Sampson error

possibly weighted by posterior π(mij) [Chum et al. 2003]

LO(Cbest)

iv) update Cbest, update inliers using (27), re-estimate N from inlier counts →123 for derivation

N =
log(1− P )

log(1− εs)
, ε =

| inliers(Cbest)|
mn

,

c) t := t+ 1

4. output Cbest

• see MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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https://cw.felk.cvut.cz/doku.php/courses/a4m33mpv/start
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