Bundle Adjustment

Given:

1. set of 3D points $\left\{\mathbf{X}_{i}\right\}_{i=1}^{p}$
2. set of cameras $\left\{\mathbf{P}_{j}\right\}_{j=1}^{c}$
3. fixed tentative projections $\mathbf{m}_{i j}$

Required:

1. corrected 3D points $\left\{\mathbf{X}_{i}^{\prime}\right\}_{i=1}^{p}$
2. corrected cameras $\left\{\mathbf{P}_{j}^{\prime}\right\}_{j=1}^{c}$

Latent:

- for simplicity, \mathbf{X}, \mathbf{m} are considered Cartesian (not homogeneous)
- we have projection error $\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)=\mathbf{x}_{i}-\mathbf{m}_{i}$ per image feature, where $\underline{\mathbf{x}}_{i}=\mathbf{P}_{j} \underline{\mathbf{X}}_{i}$
- for simplicity, we will work with scalar error $e_{i j}=\left\|\mathbf{e}_{i j}\right\|$

Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization, as in Robust Matching Model $\rightarrow 112$

$$
p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\prod_{\text {pts: } i=1}^{p} \prod_{\text {cams:j=1 }}^{c}\left(\left(1-P_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)+P_{0} p_{0}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)
$$

marginalized negative log-density is $(\rightarrow 113)$

$$
-\log p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}\left(\mathbf{x}_{i}, \mathbf{P}_{j}\right)}{2 \sigma_{1}^{2}}}+t\right)}_{\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)=\nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)} \stackrel{\text { def }}{=} \sum_{i} \sum_{j} \nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)
$$

- $e_{i j}$ is the projection error (not Sampson error)
- $\nu_{i j}$ is a 'robust' error fcn.; it is non-robust $\left(\nu_{i j}=e_{i j}\right)$ when $t=0$
- $\rho(\cdot)$ is a 'robustification function' we often find in M-estimation
- the $\mathbf{L}_{i j}$ in Levenberg-Marquardt changes to vector

$$
\left(\mathbf{L}_{i j}\right)_{l}=\frac{\partial \nu_{i j}}{\partial \theta_{l}}=\underbrace{\frac{1}{1+t e^{e_{i j}^{2}(\theta) /\left(2 \sigma_{1}^{2}\right)}}}_{\text {small for big } e_{i j}} \cdot \frac{1}{\nu_{i j}(\theta)} \cdot \frac{1}{4 \sigma_{1}^{2}} \cdot \frac{\partial e_{i j}^{2}(\theta)}{\partial \theta_{l}}
$$

but the LM method stays the same as before $\rightarrow 106-107$

- outliers: almost no impact on \mathbf{d}_{s} in normal equations because the red term in (32) scales contributions to both sums down for the particular $i j$

$$
-\sum_{i, j} \mathbf{L}_{i j}^{\top} \nu_{i j}\left(\theta^{s}\right)=\left(\sum_{i, j}^{k} \mathbf{L}_{i j}^{\top} \mathbf{L}_{i j}\right) \mathbf{d}_{s}
$$

－Sparsity in Bundle Adjustment

We have $q=3 p+11 k$＂parameters：$\theta=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{p} ; \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{k}\right)$ points，cameras We will use a running index $r=1, \ldots, z, z=p \cdot k$ ．Then each r corresponds to some i, j $\theta^{*}=\arg \min _{\theta} \sum_{r=1}^{z} \nu_{r}^{2}(\theta), \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s},-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right) \mathbf{d}_{s}$ The block form of \mathbf{L}_{r} in Levenberg－Marquardt（ $\rightarrow 106$ ）is zero except in columns i and j ： r－th error term is $\nu_{r}^{2}=\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)$

－＂points first，then cameras＂scheme

Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

$$
\text { find } \mathbf{d}_{s} \text { such that } \quad-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right) \mathbf{d}_{s}
$$

This is a linear set of equations $\mathbf{A x}=\mathbf{b}$, where

- A is very large
approx. $3 \cdot 10^{4} \times 3 \cdot 10^{4}$ for a small problem of 10000 points and 5 cameras
- \mathbf{A} is sparse and symmetric, \mathbf{A}^{-1} is dense direct matrix inversion is prohibitive

Choleski: Every symmetric positive definite matrix \mathbf{A} can be decomposed to $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$, where \mathbf{L} is lower triangular. If \mathbf{A} is sparse then \mathbf{L} is sparse, too.

1. decompose $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$
transforms the problem to solving $\mathbf{L} \underbrace{\mathbf{L}^{\top} \mathbf{x}}_{\mathbf{c}}=\mathbf{b}$
2. solve for x in two passes:

$$
\begin{array}{rrr}
\mathbf{L} \mathbf{c}=\mathbf{b} & \mathbf{c}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{b}_{i}-\sum_{j<i} \mathbf{L}_{i j} \mathbf{c}_{j}\right) \quad \text { forward substitution, } i=1, \ldots, q \\
\mathbf{L}^{\top} \mathbf{x}=\mathbf{c} & \mathbf{x}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{c}_{i}-\sum_{j>i} \mathbf{L}_{j i} \mathbf{x}_{j}\right) & \text { back-substitution }
\end{array}
$$

- Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are $9 p+121 k+66 p k \approx 3.4 \cdot 10^{6}$; ca. $250 \times$ fewer than all elements
- it can be computed on single elements or on entire blocks
- use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]
- λ controls the definiteness

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
% for sparse square symmetric positive definite matrix A,
% especially useful for arrowhead sparse matrices.
% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)
    [p,q] = size(A);
if p ~= q, error 'Matrix A is not square'; end
L = sparse(q,q);
F = ones(q,1);
for i=1:q
    F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
    for j = F(i):i-1
        k = max(F(i),F(j));
        a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
        L(i,j) = a/L(j,j);
    end
    a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
    if a < O, error 'Matrix A is not positive definite'; end
    L(i,i) = sqrt(a);
end
end
```


-Gauge Freedom

1. The external frame is not fixed:

See Projective Reconstruction Theorem $\rightarrow 129$

$$
\underline{\mathbf{m}}_{i j} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j} \mathbf{H}^{-1} \mathbf{H} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

2. Some representations are not minimal, e.g.

- \mathbf{P} is 12 numbers for 11 parameters
- we may represent \mathbf{P} in decomposed form $\mathbf{K}, \mathbf{R}, \mathbf{t}$
- but \mathbf{R} is 9 numbers representing the 3 parameters of rotation

As a result

- there is no unique solution
- matrix $\sum_{r} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}$ is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2a. either imposing constraints on projective entities

- cameras, e.g. $\mathbf{P}_{3,4}=1$
this excludes affine cameras
- points, e.g. $\left\|\underline{\mathbf{X}}_{i}\right\|^{2}=1$
this way we can represent points at infinity
2 b . or using minimal representations
- points in their Euclidean representation $\mathbf{X}_{i} \quad$ but finite points may be an unrealistic model
- rotation matrix can be represented by axis-angle or the Cayley transform see next

Implementing Simple Constraints

What for?

1. fixing external frame as in $\theta_{i}=\mathbf{t}_{i}$
'trivial gauge'
2. representing additional knowledge as in $\theta_{i}=\theta_{j} \quad$ e.g. cameras share calibration matrix \mathbf{K}

Introduce reduced parameters $\hat{\theta}$ and replication matrix \mathbf{T} :

$$
\theta=\mathbf{T} \hat{\theta}+\mathbf{t}, \quad \mathbf{T} \in \mathbb{R}^{p, \hat{p}}, \quad \hat{p} \leq p
$$

then \mathbf{L}_{r} in LM changes to $\mathbf{L}_{r} \mathbf{T}$ and everything else stays the same $\rightarrow 106$

these \mathbf{T}, \mathbf{t} represent

$\theta_{1}=\hat{\theta}_{1}$	no change
$\theta_{2}=\hat{\theta}_{2}$	no change
$\theta_{3}=t_{3}$	constancy
$\theta_{4}=\theta_{5}=\hat{\theta}_{4}$	equality

- T deletes columns of \mathbf{L}_{r} that correspond to fixed parameters it reduces the problem size
- consistent initialisation: $\theta^{0}=\mathbf{T} \hat{\theta}^{0}+\mathbf{t} \quad$ or filter the init by pseudoinverse $\theta^{0} \mapsto \mathbf{T}^{\dagger} \theta^{0}$
- no need for computing derivatives for θ_{j} corresponding to all-zero rows of \mathbf{T} fixed θ
- constraining projective entities $\rightarrow 144-145$
- more complex constraints tend to make normal equations dense
- implementing constraints is safer than explicit renaming of the parameters, gives a flexibility to experiment
- other methods are much more involved, see [Triggs et al. 1999]
- BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

Matrix Exponential

- for any square matrix we define

$$
\operatorname{expm} \mathbf{A}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \quad \text { note: } \mathbf{A}^{0}=\mathbf{I}
$$

- some properties:

$$
\begin{aligned}
& \operatorname{expm} \mathbf{0}=\mathbf{I}, \quad \operatorname{expm}(-\mathbf{A})=(\operatorname{expm} \mathbf{A})^{-\mathrm{I}} \\
& \operatorname{expm}(a \mathbf{A}) \operatorname{expm}(b \mathbf{A})=\operatorname{expm}((a+b) \mathbf{A}), \quad \operatorname{expm}(\mathbf{A}+\mathbf{B}) \neq \operatorname{expm}(\mathbf{A}) \operatorname{expm}(\mathbf{B})
\end{aligned}
$$

$\operatorname{expm}\left(\mathbf{A}^{\top}\right)=(\operatorname{expm} \mathbf{A})^{\top}$ hence if \mathbf{A} is skew symmetric then $\operatorname{expm} \mathbf{A}$ is orthogonal:

$$
(\operatorname{expm}(\mathbf{A}))^{\top}=\operatorname{expm}\left(\mathbf{A}^{\top}\right)=\operatorname{expm}(-\mathbf{A})=(\operatorname{expm}(\mathbf{A}))^{-1}
$$

$\operatorname{det} \operatorname{expm} \mathbf{A}=\operatorname{expm}(\operatorname{tr} \mathbf{A})$
Ex:

- homography can be represented via exponential map with 8 numbers e.g. as

$$
\mathbf{H}=\operatorname{expm} \mathbf{Z} \quad \text { such that } \quad \operatorname{tr} \mathbf{Z}=0, \text { eg. } \mathbf{Z}=\left[\begin{array}{ccc}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & -\left(z_{11}+z_{22}\right)
\end{array}\right]
$$

- rotation can be represented by skew-symmetric matrix (3 numbers), see next

-Minimal Representations for Rotation

- \mathbf{o} - rotation axis, $\|\mathbf{o}\|=1, \varphi$ - rotation angle
- wanted: simple mapping to/from rotation matrices

1. Matrix exponential. Let $\boldsymbol{\omega}=\varphi \mathbf{o}, 0 \leq \varphi<\pi$, then

$$
\mathbf{R}=\operatorname{expm}[\boldsymbol{\omega}]_{\times}=\sum_{n=0}^{\infty} \frac{[\boldsymbol{\omega}]_{\times}^{n}}{n!}={ }^{\circledast}{ }^{1}=\mathbf{I}+\frac{\sin \varphi}{\varphi}[\boldsymbol{\omega}]_{\times}+\frac{1-\cos \varphi}{\varphi^{2}}[\boldsymbol{\omega}]_{\times}^{2}
$$

- for $\varphi=0$ we take the limit and get $\mathbf{R}=\mathbf{I}$
- this is the Rodrigues' formula for rotation
- inverse (the principal logarithm of \mathbf{R}) from

$$
\|\boldsymbol{\omega}\|=\varphi \quad 0 \leq \varphi<\pi, \quad \cos \varphi=\frac{1}{2}(\operatorname{tr} \mathbf{R}-1), \quad[\boldsymbol{\omega}]_{\times}=\frac{\varphi}{2 \sin \varphi}\left(\mathbf{R}-\mathbf{R}^{\top}\right)
$$

2. Cayley's representation; let $\mathbf{a}=\mathbf{o} \tan \frac{\varphi}{2}$, then

$$
\begin{aligned}
\mathbf{R} & =\left(\mathbf{I}+[\mathbf{a}]_{\times}\right)\left(\mathbf{I}-[\mathbf{a}]_{\times}\right)^{-1}, \quad[\mathbf{a}]_{\times}=(\mathbf{R}+\mathbf{I})^{-1}(\mathbf{R}-\mathbf{I}) \\
\mathbf{a}_{1} \circ \mathbf{a}_{2} & =\frac{\mathbf{a}_{1}+\mathbf{a}_{2}-\mathbf{a}_{1} \times \mathbf{a}_{2}}{1-\mathbf{a}_{1}^{\top} \mathbf{a}_{2}} \quad \text { composition of rotations } \mathbf{R}=\mathbf{R}_{1} \mathbf{R}_{2}
\end{aligned}
$$

- again, cannot represent rotations for $\phi \geq \pi$
- no trigonometric functions
- explicit composition formula

－Minimal Representations for Other Entities

with the help of rotation we can minimally represent
1．fundamental matrix

$$
\mathbf{F}=\mathbf{U D V}^{\top}, \quad \mathbf{D}=\operatorname{diag}\left(1, d^{2}, 0\right), \quad \mathbf{U}, \mathbf{V} \text { are rotations, } \quad 3+1+3=7 \mathrm{DOF}
$$

2．essential matrix

$$
\mathbf{E}=[-\mathbf{t}]_{\times} \mathbf{R}, \quad \mathbf{R} \text { is rotation }, \quad\|\mathbf{t}\|=1, \quad 3+2=5 \mathrm{DOF}
$$

3．camera

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right], \quad 5+3+3=11 \mathrm{DOF}
$$

Interestingly，let
［Eade 2017］

$$
\mathbf{B}=\left[\begin{array}{cc}
{[\boldsymbol{\omega}]_{X}} & \mathbf{u} \\
\mathbf{0}^{\top} & 0
\end{array}\right], \quad \mathbf{B} \in \mathbb{R}^{4,4}
$$

then，assuming $\|\boldsymbol{\omega}\|=\phi>0$

$$
\begin{gathered}
{\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\operatorname{expm} \mathbf{B}=\mathbf{I}_{4}+\mathbf{B}+h_{2}(\phi) \mathbf{B}^{2}+h_{3}(\phi) \mathbf{B}^{3}=\left[\begin{array}{cc}
\operatorname{expm}[\boldsymbol{\omega}]_{\times} & \mathbf{V} \mathbf{u} \\
\mathbf{0}^{\top} & 1
\end{array}\right]} \\
\mathbf{V}=\mathbf{I}_{3}+h_{2}(\phi)[\boldsymbol{\omega}]_{\times}+h_{3}(\phi)[\boldsymbol{\omega}]_{\times}^{2}, \quad \mathbf{V}^{-1}=\mathbf{I}_{3}-\frac{1}{2}[\boldsymbol{\omega}]_{\times}+h_{4}(\phi)[\boldsymbol{\omega}]_{\times}^{2} \\
h_{1}(\phi)=\frac{\sin \phi}{\phi}, \quad h_{2}(\phi)=\frac{1-\cos \phi}{\phi^{2}}, \quad h_{3}(\phi)=\frac{\phi-\sin \phi}{\phi^{3}}, \quad h_{4}(\phi)=\frac{1}{\phi^{2}}\left(1-\frac{1}{2} \phi \cot \frac{\phi}{2}\right)
\end{gathered}
$$

Thank You

