»Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

in this picture we are looking ‘down the street’

N

right-handed canonical coordinate system
(z,y, z) with unit vectors ez, ey, e,

origin = center of projection C
image plane 7 at unit distance from C
optical axis O is perpendicular to 7

principal point xp: intersection of O and 7
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perspective camera is given by C and 7
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»Natural and Canonical Image Coordinate Systems

projected point in canonical camera (z # 0)
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projected point in scanned image scale by f and translate to (ug, vo)
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e ‘calibration’ matrix K transforms canonical Py to standard perspective camera P
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» Computing with Perspective Camera Projection Matrix

mi f 0 w 0 v fr+uoz Jer?Uo
m= |mz| =1[0 f v O Yl ~ fy+voz ~ |y + Fvo
z
ms 0 0 1 0 1 z 7
——
P= KT, (a)
m_ fi+u0:u, m2 _ &—f—vo—v when ms3 #0
ms ms3
f — 'focal length’ — converts length ratios to pixels, [f]=px, f>0
(uo,v0) — principal point in pixels
Perspective Camera:
since P € R34

1. dimension reduction

2. nonlinear unit change1—1-z/f, see (a)
for convenience we use P11 = Pao = f rather than P33 = 1/f and the ug, vg in relative units
ms = 0 represents points at infinity in image plane 7 i.e. points with z =0
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»Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera R.t cam\%’
coordinate system: -
X.=RX, +t world ‘
T Fu
R - camera rotation matrix RQ = L  world orientation in the camera coordinate frame F.
t — camera translation vector ”(4“2 = { world origin in the camera coordinate frame F.
Xe RX, +t R t]|[X,
@Xc:KPg{l]:KPO{ 1 ] :KPO[OT 1 1 K[R t] ),
T

Py (a 3 x 4 mtx) selects the first 3 rows of T and discards the last row

e Ris rotation, RTR =1, detR = +1 I € R*3 identity matrix
® 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
® alternative, often used, camera representations

P=K[R t|=KR[I -C]

C - camera position in the world reference frame F,, t = —-RC
rl;r — optical axis in the world reference frame F,, third row of R: r3 = R™! [0,0, 1]—r

® we can save some conversion and computation by noting that KR[I —C} X=KR(X-C)
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»Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes
o skew angle 6 of the digitization raster

e pixel aspect ratio a f f cotf
—f co ug

ey, K= |0 f/(asinf) wo
0 0 1
€v o O “X units: [f] = px, [uo] = px, [vo] =px, [a] =1
1

® H1; 2pt: Verify this K. Hints: (1) Map first by skew, then by
(U07UO) sampling scale f, a f, then shift by ug, vo; (2) Skew: express
point x as x = u’e,s + v'e, = uey + vey, €y, €, etc. are unit
basis vectors, K maps from an orthogonal system to a skewed
system [w'u’, w'v',w']T = K[u,v,1]"; deadline LD+2 wk

general finite perspective camera has 11 parameters:
e 5 intrinsic parameters: f, uo, vo, a, 0 finite camera: det K # 0
e 6 extrinsic parameters: t, R(a, 8,7)

m~PX, P=[Q q=K[R t|]=KR[I —C] a recipe for filling P

Representation Theorem: The set of projection matrices P of finite perspective cameras is
isomorphic to the set of homogeneous 3 x 4 matrices with the left 3 x 3 submatrix Q non-singular.
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»Projection Matrix Decomposition

=[Q q] — K[R t{]

QeR33 full rank (if finite perspective camera)
K € R33 upper triangular with positive diagonal entries
R e R33 rotation: R'R=TIanddetR = +1
Q@ q =K[R |- [KR Kt Q= FE also 534
2. RQ decomposition of Q = KR using three Givens rotations_q, an 2! [H&Z, p. 579]
T (72 7'3
K =Q Rs:R3:1R -
Q R32R31Ro1 ‘fM 3, 71; = Q!
R-! U0 724
R,;; zeroes element ij in Q affecting only columns i and j and the sequence preserves previously
zeroed elements, e.g. (see next slide for derivation details
1 0 0 s g
Ras= |0 ¢ —s 2 +s2= q32

gives [0 kss = cq3o + s
0 s ¢ g2 o q33 \ a3p + a33 \ 435 + a33

® P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

e RQ decomposition nonuniqueness: KR = KT~'TR, where T = diag(—1,—1,1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive
‘thin’ RQ decomposition

® care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]
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I RQ Decomposition Step

91,11€ 91,2 + 8d1,3]1-89d1,2 + €dy,3
e T e P L P R E P

qz,:l‘s 93,2 *+ © 93,3 C
(%
S

Sl G G s SR S, e 6,

2 2 2 2
-492,393,2*92,293,3 42,2 93,2*92,3 93,3
92,1
2 2 2 2
\/“:,2‘%,3 43,2493, 3

a3,1 0 NP
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»Center of Projection

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem

Let P be a camera and let there be B# 0 s. t.@} = 0. Then B is equivalent to the
projection center C (homogeneous, in world eSordinate frame).

Proof.
1. Consider spatial line AB (B is

iven). We can write

XA)~AA+(1-XNB, AeR

2. it projects to
PXA\)~APA+(1-AN)PB~PA
® the entire line projects to a single point = it must pass through the optical center of P

® this holds for all choices of A = the only common point of the lines is the C, i.e. B ~ C

Hence

0=PC=[Q (] {ﬂ =QC+q => C=-Q'q

C = (¢;), where ¢j = (—1)7 det PU), in which PU) is P _with column j dropped
Matlab: C_homo = null(P); or C = -Q\q; =¥ )% 9
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»Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider line
d unit line direction vector, ||d|| = 1, A € R, Cartesian representation

X(\) =C+Ad

2. the projection of the (finite) point X (\) is
m=[a o V] QU +2d) + = rQd =
d =-ec
el

... which is also the image of a point at infinity in P3

e optical ray line corresponding to image point m is the set
XN =C+(\Q) 'm, Ae€R

e optical ray direction may be represented by a point at infinity (d,0) in P3

® in world coordinate frame
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»Optical Axis

Optical axis: Optical ray that is perpendicular to image plane 7

1. points on a line parallel to 7 project to line at infinity in 7:

-
u q; qua X
v| ~PX = q;r Qo4 { 1]
0 q; qa4
(e}

therefore the set of points X is parallel to 7 iff

a3 X +qsa =0

3. this is a plane with +q5 as the normal vector
optical axis direction: substitution P — AP must not change the direction

we select (assuming det(R) > 0)

0 =det(Q) qs
[H&Z, p. 161]

if P— AP then det(Q) — A\3det(Q) and q3 — Aqg

o the axis is expressed in world coordinate frame
R. Sara, CMP; rev. 9-Oct-2018 =il

A

3D Computer Vision: II. Perspective Camera (p. 36/189)



» Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, g is the directional vector of optical axis

2. we take point at infinity on the optical axis that must
project to principal point myg q3

3. then
mo =~ [Q CI] [%3] =Qaq;

principal point:  my ~ Qq;

e principal point is also the center of radial distortion
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»Optical Plane
A spatial plane with normal p passing through optical center C and a given image line n.
optical ray given by m

d~Q 'm
optical ray given by m’ d' ~ Q 'm’

e note the way Q factors out!

hence, 0=p' (X —-C)=n"Q(X -C)=n'PX=(P'n)'X forevery X in plane p
30
N

optical plane is given by n:  p~P'n pPLT+p2y+p3sz+ps=0
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Cross-Check: Optical Ray as Optical Plane Intersection
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optical plane normal given by n
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optical plane normal given by n’
d=pxp'=(Q'n)x(Q'n)=Q '(axn)=Q"

13
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»Summary: Optical Center, Ray, Axis, Plane

General finite camera
-

q; G4
P=[Q q=|a; g¢u|=K[R t|=KR[I -C]
a3 s
C ~ rnull(P) optical center (world coords.)
d=Q 'm optical ray direction (world coords.)
det(Q) qs outward optical axis (world coords.)
Qaq; principal point (in image plane)
p= P'n optical plane (world coords.)
f —fcotd wo
K= |0 f/(asinf) wo camera (calibration) matrix (f, uo, vo in pixels)
0 0 1
R camera rotation matrix (cam coords.)

o+

camera translation vector (cam coords.)
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Thank You
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