
ICanonical Perspective Camera (Pinhole Camera, Camera Obscura)
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1. in this picture we are looking ‘down the street’

2. right-handed canonical coordinate system
(x, y, z) with unit vectors ex, ey , ez

3. origin = center of projection C

4. image plane π at unit distance from C

5. optical axis O is perpendicular to π

6. principal point xp: intersection of O and π

7. perspective camera is given by C and π
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coordinate system:
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INatural and Canonical Image Coordinate Systems

projected point in canonical camera (z 6= 0)
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projected point in scanned image scale by f and translate to (u0, v0)
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 = KP0 X= PX

• ‘calibration’ matrix K transforms canonical P0 to standard perspective camera P
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IComputing with Perspective Camera Projection Matrix

m=

m1
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m3

 =
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0 f v0 0
0 0 1 0
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︸ ︷︷ ︸

(a)

m1

m3
=
f x

z
+ u0 = u,

m2

m3
=
f y

z
+ v0 = v when m3 6= 0

f – ‘focal length’ – converts length ratios to pixels, [f ] = px, f > 0

(u0, v0) – principal point in pixels

Perspective Camera:

1. dimension reduction since P ∈ R3,4

2. nonlinear unit change 111 7→ 111 · z/f , see (a)
for convenience we use P11 = P22 = f rather than P33 = 1/f and the u0, v0 in relative units

3. m3 = 0 represents points at infinity in image plane π i.e. points with z = 0
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IChanging The Outer (World) Reference Frame

A transformation of a point from the world to camera
coordinate system:

Xc = RXw + t

R; tFw F

world

cam

R – camera rotation matrix world orientation in the camera coordinate frame Fc
t – camera translation vector world origin in the camera coordinate frame Fc

PXc= KP0

[
Xc

1

]
= KP0

[
RXw + t

1

]
= KP0

[
R t

0> 1

]
︸ ︷︷ ︸

T

[
Xw

1

]
= K

[
R t

]
Xw

P0 (a 3× 4 mtx) selects the first 3 rows of T and discards the last row

• R is rotation, R>R = I, detR = +1 I ∈ R3,3 identity matrix

• 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

• alternative, often used, camera representations

P = K
[
R t

]
= KR

[
I −C

]
C – camera position in the world reference frame Fw t = −RC
r>3 – optical axis in the world reference frame Fw third row of R: r3 = R−1[0, 0, 1]>

• we can save some conversion and computation by noting that KR
[
I −C

]
X= KR(X−C)
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IChanging the Inner (Image) Reference Frame

The general form of calibration matrix K includes
• skew angle θ of the digitization raster
• pixel aspect ratio a

a
1

ev

eu

(u0, v0)

θ
K =

f −f cot θ u0

0 f/(a sin θ) v0
0 0 1


units: [f ] = px, [u0] = px, [v0] = px, [a] = 1

~ H1; 2pt: Verify this K. Hints: (1) Map first by skew, then by
sampling scale f , a f , then shift by u0, v0; (2) Skew: express
point x as x = u′eu′ + v′ev′ = ueu + vev , eu, ev etc. are unit
basis vectors, K maps from an orthogonal system to a skewed
system [w′u′, w′v′, w′]> = K[u, v, 1]>; deadline LD+2 wk

general finite perspective camera has 11 parameters:
• 5 intrinsic parameters: f , u0, v0, a, θ finite camera: detK 6= 0

• 6 extrinsic parameters: t, R(α, β, γ)

m' PX, P =
[
Q q

]
= K

[
R t

]
= KR

[
I −C

]
a recipe for filling P

Representation Theorem: The set of projection matrices P of finite perspective cameras is
isomorphic to the set of homogeneous 3× 4 matrices with the left 3× 3 submatrix Q non-singular.

random finite camera: Q=rand(3,3); while det(Q)==0, Q=rand(3,3); end, P=[Q, rand(3,1)];3D Computer Vision: II. Perspective Camera (p. 31/189) R. Šára, CMP; rev. 9–Oct–2018



IProjection Matrix Decomposition

P =
[
Q q

]
−→ K

[
R t

]
Q ∈ R3,3 full rank (if finite perspective camera)

K ∈ R3,3 upper triangular with positive diagonal entries
R ∈ R3,3 rotation: R

>
R = I and detR = +1

1.
[
Q q

]
= K

[
R t

]
=
[
KR Kt

]
also →34

2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K = Q R32R31R21︸ ︷︷ ︸
R−1

Rij zeroes element ij in Q affecting only columns i and j and the sequence preserves previously
zeroed elements, e.g. (see next slide for derivation details)

R32 =

1 0 0
0 c −s
0 s c

 gives
c2 + s2 = 1

0 = k32 = c q32 + s q33
⇒ c =

q33√
q232 + q233

s =
−q32√
q232 + q233

~ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

• RQ decomposition nonuniqueness: KR = KT−1TR, where T = diag(−1,−1, 1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive

‘thin’ RQ decomposition

• care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]
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RQ Decomposition Step

Q = Array [ q #1 ,#2 & , { 3 , 3 } ] ;

R32 = { { 1 , 0 , 0 } , { 0 , c , - s } , { 0 , s , c } } ; R32 // MatrixForm

1 0 0

0 c - s

0 s c

Q1 = Q . R32 ; Q1 // MatrixForm

q 1,1 c q 1,2 + s q 1,3 - s q 1,2 + c q 1,3

q 2,1 c q 2,2 + s q 2,3 - s q 2,2 + c q 2,3

q 3,1 c q 3,2 + s q 3,3 - s q 3,2 + c q 3,3

s1 = Solve [ { Q1 [ [ 3 ] ] [ [ 2 ] ] ⩵ 0 , c ^ 2 + s ^ 2 ⩵ 1 } , { c , s } ] [ [ 2 ] ]

 c →

q 3,3

q 3,2
2

+ q 3,3
2

, s → -

q 3,2

q 3,2
2

+ q 3,3
2



Q1 /. s1 // Simplify // MatrixForm

q 1,1

-q1,3 q3,2 +q1,2 q3,3

q3,2
2

+q3,3
2

q1,2 q3,2 +q1,3 q3,3

q3,2
2

+q3,3
2

q 2,1

-q2,3 q3,2 +q2,2 q3,3

q3,2
2

+q3,3
2

q2,2 q3,2 +q2,3 q3,3

q3,2
2

+q3,3
2

q 3,1 0 q 3,2
2

+ q 3,3
2
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ICenter of Projection

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let P be a camera and let there be B 6= 0 s.t. PB= 0. Then B is equivalent to the
projection center C (homogeneous, in world coordinate frame).

Proof.

1. Consider spatial line AB (B is given). We can write

X(λ) ' λA+ (1− λ)B, λ ∈ R B?

B = C?

A X(λ)

2. it projects to
PX(λ) ' λPA+ (1− λ)PB' PA

• the entire line projects to a single point ⇒ it must pass through the optical center of P

• this holds for all choices of A ⇒ the only common point of the lines is the C, i.e. B' C ut
Hence

0 = PC=
[
Q q

] [C
1

]
= QC+ q ⇒ C = −Q−1q

C= (cj), where cj = (−1)j detP(j), in which P(j) is P with column j dropped

Matlab: C_homo = null(P); or C = -Q\q;
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IOptical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider line
d unit line direction vector, ‖d‖ = 1, λ ∈ R, Cartesian representation

X(λ) = C+ λd

2. the projection of the (finite) point X(λ) is

m'
[
Q q

] [X(λ)
1

]
= Q(C+ λd) + q = λQd =

= λ
[
Q q

] [d
0

]
. . . which is also the image of a point at infinity in P3

• optical ray line corresponding to image point m is the set

X(λ) = C+ (λQ)−1m, λ ∈ R

X(λ)

C
π

m

d

• optical ray direction may be represented by a point at infinity (d, 0) in P3

• in world coordinate frame
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IOptical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points on a line parallel to π project to line at infinity in π:uv
0

 ' PX=

q>1 q14
q>2 q24
q>3 q34

[X
1

]

2. therefore the set of points X is parallel to π iff

q>3 X+ q34 = 0

3. this is a plane with ±q3 as the normal vector

o XC�
4. optical axis direction: substitution P 7→ λP must not change the direction

5. we select (assuming det(R) > 0)

o = det(Q)q3

if P 7→ λP then det(Q) 7→ λ3 det(Q) and q3 7→ λq3 [H&Z, p. 161]

• the axis is expressed in world coordinate frame
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IPrincipal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, q3 is the directional vector of optical axis

2. we take point at infinity on the optical axis that must
project to principal point m0

3. then

m0 '
[
Q q

] [q3

0

]
= Qq3

m0�q3 C
principal point: m0 ' Qq3

• principal point is also the center of radial distortion
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IOptical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

� d0 pCm0 n mX d�
optical ray given by m d ' Q−1m

optical ray given by m′ d′ ' Q−1m′

p ' d× d′ = (Q−1m)× (Q−1m′) = Q>(m×m′) = Q>n

• note the way Q factors out!

hence, 0 = p>(X−C) = n>Q(X−C)︸ ︷︷ ︸
→30

= n>PX= (P>n)>X for every X in plane ρ

optical plane is given by n: ρ ' P>n ρ1 x+ ρ2 y + ρ3 z + ρ4 = 0
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Cross-Check: Optical Ray as Optical Plane Intersection

m
�n0n d p0

Cp
optical plane normal given by n p = Q>n

optical plane normal given by n′ p′ = Q>n′

d = p× p′ = (Q>n)× (Q>n′) = Q−1(n× n′) = Q−1m
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ISummary: Optical Center, Ray, Axis, Plane

General finite camera

P =
[
Q q

]
=

q
>
1 q14

q>2 q24

q>3 q34

 = K
[
R t

]
= KR

[
I −C

]
C' rnull(P) optical center (world coords.)

d = Q−1 m optical ray direction (world coords.)

det(Q)q3 outward optical axis (world coords.)

Qq3 principal point (in image plane)

ρ = P> n optical plane (world coords.)

K =

f −f cot θ u0

0 f/(a sin θ) v0
0 0 1

 camera (calibration) matrix (f , u0, v0 in pixels)

R camera rotation matrix (cam coords.)

t camera translation vector (cam coords.)
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Thank You


	Canonical Perspective Camera
	Changing the Outer and Inner Reference Frames
	Projection Matrix Decomposition
	Anatomy of Linear Perspective Camera
	End of Slides

