► Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

- 1. in this picture we are looking 'down the street'
- 2. right-handed canonical coordinate system (x, y, z) with unit vectors \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z
- 3. origin = center of projection C
- 4. image plane π at unit distance from C
- 5. optical axis O is perpendicular to π
- 6. principal point x_p : intersection of O and π
- 7. perspective camera is given by C and π

3D Computer Vision: II. Perspective Camera (p. 27/189) つくや

projected point in the natural image coordinate system:

$$\frac{y'}{1} = y' = \frac{y}{1+z-1} = \frac{y}{z}, \qquad x' = \frac{x}{z}$$

R. Šára, CMP; rev. 9-Oct-2018

► Natural and Canonical Image Coordinate Systems

projected point in canonical camera
$$(z \neq 0)$$

 $(x', y', 1) = \left(\frac{x}{z}, \frac{y}{z}, 1\right) = \frac{1}{z}(x, y, z) \simeq \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{P}_0} \cdot \begin{bmatrix} x\\ y\\ z\\ 1 \end{bmatrix} = \mathbf{P}_0 \mathbf{X}$

• 'calibration' matrix K transforms canonical \mathbf{P}_0 to standard perspective camera \mathbf{P}

► Computing with Perspective Camera Projection Matrix

$$\underline{\mathbf{m}} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \underbrace{\begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{P} \in \mathbf{K} \mathbf{P}_{\mathbf{s}}} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \simeq \begin{bmatrix} fx + u_0z \\ fy + v_0z \\ z \end{bmatrix} \qquad \simeq \underbrace{\begin{bmatrix} x + \frac{z}{f}u_0 \\ y + \frac{z}{f}v_0 \\ \frac{z}{f} \end{bmatrix}}_{\mathbf{(a)}}$$

$$\frac{m_1}{m_3} = \frac{f \, x}{z} + u_0 = u, \qquad \frac{m_2}{m_3} = \frac{f \, y}{z} + v_0 = v \quad \text{when} \quad m_3 \neq 0$$

f - 'focal length' – converts length ratios to pixels, $\ [f]={\rm px},\ f>0$ (u_0,v_0) – principal point in pixels

Perspective Camera:

- 1. dimension reduction since $\mathbf{P} \in \mathbb{R}^{3,4}$
 - 2. nonlinear unit change $\mathbf{1} \mapsto \mathbf{1} \cdot z/f$, see (a) for convenience we use $P_{11} = P_{22} = f$ rather than $P_{33} = 1/f$ and the u_0, v_0 in relative units
 - 3. $m_3 = 0$ represents points at infinity in image plane π i.e. points with z = 0

► Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$\mathbf{X}_c = \mathbf{R} \, \mathbf{X}_w + \mathbf{t}$$

 \mathbf{R} – camera rotation matrix $\mathcal{R}\mathcal{R}^{T} = \widehat{\mathbf{I}}$ world orient t – camera translation vector $\mathcal{A}\mathcal{I}\mathcal{R} = \mathcal{I}$ world

a
$$\mathbf{R}, \mathbf{t}$$
 cam \mathcal{F}_c
world \mathcal{F}_w tation in the camera coordinate frame \mathcal{F}_c

world origin in the camera coordinate frame \mathcal{F}_c

$$\mathbf{P} \mathbf{\underline{X}}_{c} = \mathbf{K} \mathbf{P}_{0} \begin{bmatrix} \mathbf{X}_{c} \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{P}_{0} \begin{bmatrix} \mathbf{R} \mathbf{X}_{w} + \mathbf{t} \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{P}_{0} \underbrace{\begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}}_{\mathbf{T}} \begin{bmatrix} \mathbf{X}_{w} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \underbrace{\mathbf{\underline{X}}_{w}}_{\mathbf{T}}$$

 ${f P}_0$ (a 3 imes 4 mtx) selects the first 3 rows of ${f T}$ and discards the last row

- R is rotation, $\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$, det $\mathbf{R} = +1$ $\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

 \mathbf{C}_{-} – camera position in the world reference frame \mathcal{F}_w \mathbf{r}_3^{-} – optical axis in the world reference frame \mathcal{F}_w

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

 $\label{eq:tau} \begin{array}{l} \mathbf{t} = -\mathbf{R}\mathbf{C} \\ \text{third row of } \mathbf{R} : \ \mathbf{r}_3 = \mathbf{R}^{-1}[0,0,1]^\top \end{array}$

• we can save some conversion and computation by noting that $\mathbf{KR}[\mathbf{I} - \mathbf{C}] \mathbf{X} = \mathbf{KR}(\mathbf{X} - \mathbf{C})$

► Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$\mathbf{K} = \begin{bmatrix} f & -f \cot \theta & u_0 \\ 0 & f/(a \sin \theta) & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

units: [f] = px, $[u_0] = px$, $[v_0] = px$, [a] = 1

point x as $\mathbf{x} = u' \mathbf{e}_{u'} + v' \mathbf{e}_{v'} = u \mathbf{e}_u + v \mathbf{e}_v$, \mathbf{e}_u , \mathbf{e}_v etc. are unit basis vectors, K maps from an orthogonal system to a skewed system $[w'u', w'v', w']^{\top} = \mathbf{K}[u, v, 1]^{\top};$ deadline LD+2 wk

general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: f, u_0 , v_0 , a, θ
- 6 extrinsic parameters: **t**, $\mathbf{R}(\alpha, \beta, \gamma)$

$$\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

finite camera: det $\mathbf{K} \neq 0$

a recipe for filling P

Representation Theorem: The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix Q non-singular.

Projection Matrix Decomposition

1

$$\mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \longrightarrow \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

$$\begin{array}{c} \mathbf{Q} \in \mathbb{R}^{3,3} \\ \mathbf{K} \in \mathbb{R}^{3,3} \\ \mathbf{R} \in \mathbb{R}^{3,3} \\ \mathbf{R} \in \mathbb{R}^{3,3} \\ \mathbf{R} \in \mathbb{R}^{3,3} \end{array} \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{full rank} \\ \text{upper triangular with positive diagonal entries} \\ \text{rotation:} & \mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{I} \text{ and } \det \mathbf{R} = +1 \end{array}$$

$$\begin{array}{c} \mathbf{I} \quad \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \begin{bmatrix} \mathbf{K}\mathbf{R} & \mathbf{K}\mathbf{t} \end{bmatrix} \qquad \begin{array}{c} \mathcal{Q} \approx \mathbf{k} \quad \mathbf{k} \\ \mathcal{Q} \approx \mathbf{k} \\$$

❀ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

- RQ decomposition nonuniqueness: $\mathbf{KR} = \mathbf{KT}^{-1}\mathbf{TR}$, where $\mathbf{T} = \text{diag}(-1, -1, 1)$ is also a rotation, we must correct the result so that the diagonal elements of ${f K}$ are all positive 'thin' RQ decomposition
- care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]

RQ Decomposition Step

 $\label{eq:Q} Q = Array ~ [q_{m1,m2} \ \&, \ \{3, \ 3\}]; \\ R32 = \{\{1, \ 0, \ 0\}, \ \{0, \ c, \ -s\}, \ \{0, \ s, \ c\}\}; ~ R32 ~ // ~ MatrixForm \\$

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{pmatrix}$

Q1 = Q.R32 ; Q1 // MatrixForm

$$\begin{pmatrix} q_{1,1} & c & q_{1,2} + s & q_{1,3} \\ q_{2,1} & c & q_{2,2} + s & q_{2,3} \\ q_{3,1} & c & q_{3,2} + s & q_{3,2} \\ \hline & c & q_{3,2} + s & q_{3,2} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,2} + c & q_{3,3} \\ \hline & s & q_{3,3} + c & q_{3,3} \\ \hline & s &$$

$$\left\{ c \rightarrow \frac{q_{3,2}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \text{, } s \rightarrow - \frac{q_{3,2}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \right\}$$

$$R_{31} = \begin{pmatrix} C & 0 & -S \\ 0 & 1 & 0 \\ S & O & C \end{pmatrix}$$

Q1 /. s1 // Simplify // MatrixForm

$$\begin{pmatrix} q_{1,1} & \frac{-q_{1,2} q_{3,2} + q_{1,2} q_{3,2}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} & \frac{q_{1,2} q_{3,2} + q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \\ q_{2,1} & \frac{-q_{2,3} q_{3,2} + q_{2,2} q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} & \frac{q_{2,2} q_{3,2} + q_{2,3} q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \\ q_{3,1} & 0 & \sqrt{q_{3,2}^2 + q_{3,3}^2} \end{pmatrix}$$

3D Computer Vision: II. Perspective Camera (p. 33/189) つへや

► Center of Projection

Observation: finite P has a non-trivial right null-space

rank 3 but 4 columns

B?

 $B = C^{\gamma}$

 $X(\lambda)$

A

Theorem

Let **P** be a camera and let there be $\underline{\mathbf{B}} \neq \mathbf{0}$ s.t. $(\mathbf{PB} = \mathbf{0})$. Then $\underline{\mathbf{B}}$ is equivalent to the projection center $\underline{\mathbf{C}}$ (homogeneous, in world coordinate frame).

Proof.

1. Consider spatial line AB (B is given). We can write

$$\underline{\mathbf{X}}(\lambda) \simeq \lambda \,\underline{\mathbf{A}} + (1 - \lambda) \,\underline{\mathbf{B}}, \qquad \lambda \in \mathbb{R}$$

2. it projects to

 $\mathbf{P}\underline{\mathbf{X}}(\lambda) \simeq \lambda \, \mathbf{P} \, \underline{\mathbf{A}} + (1-\lambda) \, \mathbf{P} \, \underline{\mathbf{B}} \simeq \mathbf{P} \, \underline{\mathbf{A}}$

- the entire line projects to a single point \Rightarrow it must pass through the optical center of ${f P}$
- this holds for all choices of $A \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$\mathbf{0} = \mathbf{P} \, \underline{\mathbf{C}} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ 1 \end{bmatrix} = \mathbf{Q} \, \mathbf{C} + \mathbf{q} \ \Rightarrow \ \mathbf{C} = -\mathbf{Q}^{-1} \mathbf{q}$$

 $\underline{\mathbf{C}} = (c_j)$, where $c_j = (-1)^j \det \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: C_homo = null(P); or C = $-\mathbb{Q}\setminus q$; $-\mathbb{Q}\setminus q$; q

3D Computer Vision: II. Perspective Camera (p. 34/189) のへや

► Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider line

 $\mathbf d$ unit line direction vector, $\|\mathbf d\|=1,\,\lambda\in\mathbb R,$ Cartesian representation

 $\mathbf{X}(\lambda) = \mathbf{C} + \lambda \, \mathbf{d}$

2. the projection of the (finite) point $X(\lambda)$ is

$$\mathbf{\underline{m}} \simeq \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{X}(\lambda) \\ 1 \end{bmatrix} = \mathbf{Q}(\mathbf{C} + \lambda \mathbf{d}) + \mathbf{q} = \lambda \mathbf{Q} \mathbf{d} = \\ \mathbf{q} = - \mathbf{Q} \mathbf{C} \\ \mathbf{q} = - \mathbf{Q} \mathbf{C} \end{bmatrix}$$

 \ldots which is also the image of a point at infinity in \mathbb{P}^3

optical ray line corresponding to image point m is the set

$$\mathbf{X}(\lambda) = \mathbf{C} + (\lambda \mathbf{Q})^{-1} \underline{\mathbf{m}}, \qquad \lambda \in \mathbb{R}$$

- optical ray direction may be represented by a point at infinity $(\mathbf{d},0)$ in \mathbb{P}^3
- in world coordinate frame

► Optical Axis

Optical axis: Optical ray that is perpendicular to image plane $\boldsymbol{\pi}$

1. points on a line parallel to π project to line at infinity in π :

$$\begin{bmatrix} u \\ v \\ 0 \end{bmatrix} \simeq \mathbf{P} \underline{\mathbf{X}} = \begin{bmatrix} \mathbf{q}_1^\top & q_{14} \\ \mathbf{q}_2^\top & q_{24} \\ \mathbf{q}_3^\top & q_{34} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$

2. therefore the set of points X is parallel to π iff

$$\mathbf{q}_3^\top \mathbf{X} + q_{34} = 0$$

- 4. optical axis direction: substitution $\mathbf{P}\mapsto\lambda\mathbf{P}$ must not change the direction
- 5. we select (assuming $det(\mathbf{R}) > 0$)

$$\mathbf{o} = \det(\mathbf{Q}) \, \mathbf{q}_3$$

if $\mathbf{P} \mapsto \lambda \mathbf{P}$ then $\det(\mathbf{Q}) \mapsto \lambda^3 \det(\mathbf{Q})$ and $\mathbf{q}_3 \mapsto \lambda \mathbf{q}_3$

• the axis is expressed in world coordinate frame

R. Šára, CMP; rev. 9-Oct-2018

► Principal Point

Principal point: The intersection of image plane and the optical axis

- 1. as we saw, \mathbf{q}_3 is the directional vector of optical axis
- 2. we take point at infinity on the optical axis that must project to principal point m_0

3. then

$$\underline{\mathbf{m}}_0 \simeq \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{q}_3 \\ 0 \end{bmatrix} = \mathbf{Q} \, \mathbf{q}_3$$

principal point: $\mathbf{\underline{m}}_0 \simeq \mathbf{Q} \, \mathbf{q}_3$

principal point is also the center of radial distortion

► Optical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

hence,
$$0 = \mathbf{p}^{\top}(\mathbf{X} - \mathbf{C}) = \underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X} - \mathbf{C})}_{\to 30} = \underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}} = (\mathbf{P}^{\top} \underline{\mathbf{n}})^{\top} \underline{\mathbf{X}}$$
 for every X in plane ρ

optical plane is given by n: $\boldsymbol{\rho} \simeq \mathbf{P}^\top \mathbf{n}$

3D Computer Vision: II. Perspective Camera (p. 38/189) つへや

 $\rho_1 x + \rho_2 y + \rho_3 z + \rho_4 = 0$

Cross-Check: Optical Ray as Optical Plane Intersection

p' \overline{p} d mn'n π $\mathbf{p} = \mathbf{Q}^{\top} \mathbf{n}$ optical plane normal given by n $\mathbf{p}' = \mathbf{Q}^{\top} \mathbf{n}'$ optical plane normal given by n' $\mathbf{d} = \mathbf{p} \times \mathbf{p}' = (\mathbf{Q}^{\top} \mathbf{n}) \times (\mathbf{Q}^{\top} \mathbf{n}') = \mathbf{Q}^{-1} (\mathbf{n} \times \mathbf{n}') = \mathbf{Q}^{-1} \mathbf{m}$

Summary: Optical Center, Ray, Axis, Plane

General finite camera

$$\begin{split} \mathbf{P} &= \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{q}_{1}^{\top} & q_{14} \\ \mathbf{q}_{2}^{\top} & q_{24} \\ \mathbf{q}_{3}^{\top} & q_{34} \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \\ \\ \underline{\mathbf{C}} &\simeq \mathrm{rnull}(\mathbf{P}) & \text{optical center (world coords.)} \\ \mathbf{d} &= \mathbf{Q}^{-1} \underbrace{\mathbf{m}} & \text{optical ray direction (world coords.)} \\ \\ \mathrm{det}(\mathbf{Q}) \mathbf{q}_{3} & \mathrm{outward optical axis (world coords.)} \\ \\ \mathbf{Q} \mathbf{q}_{3} & \mathrm{principal point (in image plane)} \\ \\ \boldsymbol{\rho} &= \mathbf{P}^{\top} \underbrace{\mathbf{n}} & \mathrm{optical plane (world coords.)} \\ \\ \mathbf{K} &= \begin{bmatrix} f & -f \cot \theta & u_{0} \\ 0 & f / (a \sin \theta) & v_{0} \\ 0 & 0 & 1 \end{bmatrix} & \mathrm{camera (calibration) matrix (f, u_{0}, v_{0} in pixels)} \\ \\ \\ \mathbf{R} & \mathrm{camera rotation matrix (cam coords.)} \\ \\ \\ \mathbf{t} & \mathrm{camera translation vector (cam coords.)} \end{split}$$

Thank You