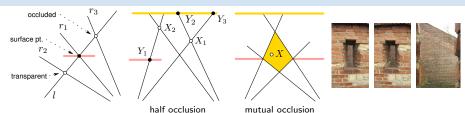
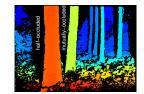
▶Understanding Basic Occlusion Types



• surface point at the intersection of rays l and r_1 occludes a world point at the intersection (l,r_3) and implies the world point (l,r_2) is transparent, therefore

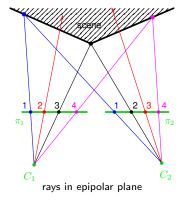
$$(l,r_3)$$
 and (l,r_2) are excluded by (l,r_1)

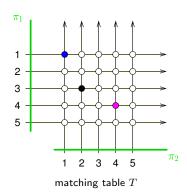
- in half-occlusion, every world point such as X_1 or X_2 is excluded by a binocularly visible surface point such as Y_1 , Y_2 , Y_3 \Rightarrow decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded \Rightarrow decisions in the zone are independent on the rest



► Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.



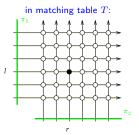


matching table

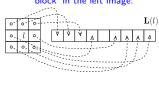
- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: matches
- numerical values associated with nodes: descriptor similarities

▶ Constructing A Suitable Image Similarity Statistic

• let $p_i = (l,r)$ and $\mathbf{L}(l)$, $\mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows



'block' in the left image:



- a simple block similarity is $SAD(l,r) = \|\mathbf{L}(l) \mathbf{R}(r)\|_1 L_1$ metric (sum of absolute differences)
- a scaled-descriptor similarity is $\sin(l,r) = \frac{\|\mathbf{L}(l) \mathbf{R}(r)\|^2}{\sigma_I^2(l,r)}$
- σ_I^2 the difference <u>scale</u>; a suitable (plug-in) estimate is $\frac{1}{2} \left[\text{var} \big(\mathbf{L}(l) \big) + \text{var} \big(\mathbf{R}(r) \big) \right]$, giving

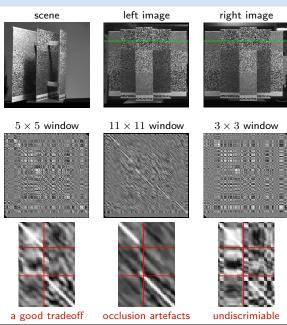
$$sim(l, r) = 1 - \underbrace{\frac{2 \operatorname{cov}(\mathbf{L}(l), \mathbf{R}(r))}{\operatorname{var}(\mathbf{L}(l)) + \operatorname{var}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r))}$$

$$var(\cdot)$$
, $cov(\cdot)$ is sample (co-)variance (34)

• ρ – MNCC – Moravec's Normalized Cross-Correlation statistic

$$\rho^2 \in [0,1], \qquad \operatorname{sign} \rho \sim \text{`phase'}$$

How A Scene Looks in The Filled-In Matching Table



- MNCC ρ used $(\alpha = 1.5, \beta = 1)$
- high-correlation structures correspond to scene objects

constant disparity

- a diagonal in matching table
- zero disparity is the main diagonal

depth discontinuity

 horizontal or vertical jump in matching table

large image window

- better correlation
- worse occlusion localization

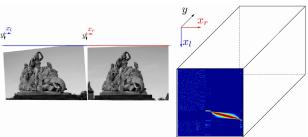
repeated texture

 horizontal and vertical block repetition

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

- texture window
- [Moravec 77] a descriptor like DAISY [Tola et al. 2010]
- learned descriptors
- reflectance profile under a moving illuminant
- photometric ratios
- dual photometric stereo
- polarization signature
- similar points are more likely to match
- image similarity values for all 'match candidates' give the 3D matching table

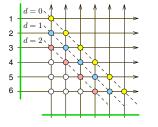


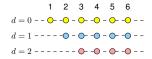
[Wolff & Angelopoulou 93-94] [Ikeuchi 87]

video

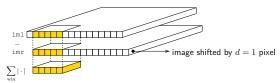
► Marroquin's Winner Take All (WTA) Matching Algorithm

- 1. per left-image pixel: find the most similar right-image pixel using $SAD \longrightarrow 164$
- 2. select disparity range this is a critical weak point
- 3. represent the matching table diagonals in a compact form





4. use an 'image sliding & cost aggregation algorithm'

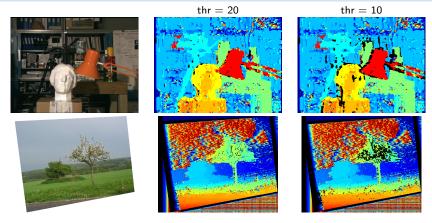


5. threshold results by maximal allowed dissimilarity

A Matlab Code for WTA

```
function dmap = marroquin(iml,imr,disparityRange)
       iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
 thr = 20:
                       % bad match rejection threshold
 r = 2:
 winsize = 2*r+[1 1]; % 5x5 window (neighborhood) for r=2
 % the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
 N = boxing(ones(size(iml)), winsize);
 % computing dissimilarity per pixel (unscaled SAD)
 for d = 0:disparityRange
                                                 % cycle over all disparities
  slice = abs(imr(:.1:end-d) - iml(:.d+1:end)): % pixelwise dissimilarity
  V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
 end
 % collect winners, threshold, and output disparity map
 [cmap,dmap] = min(V,[],3);
 dmap(cmap > thr) = NaN;  % mask-out high dissimilarity pixels
end % of marroquin
function c = boxing(im, wsz)
 % if the mex is not found, run this slow version:
 c = conv2(ones(1.wsz(1)), ones(wsz(2).1), im. 'same'):
end % of boxing
```

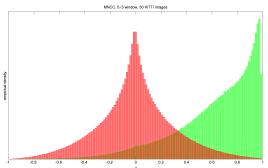
WTA: Some Results



- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr = 10) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
 - unnormalized image dissimilarity does not work well
 - no occlusion model

► A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches and Non-Matches



- histograms of ρ computed from 5×5 correlation window
- KITTI dataset
 - $4.2 \cdot 10^6$ ground-truth (LiDAR) matches for $p_1(\rho)$ (green),
 - $4.2 \cdot 10^6$ random non-matches for $p_0(\rho)$ (red)

Obs:

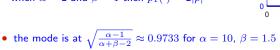
- ullet non-matches (red) may have arbitrarily large ho
- matches (green) may have arbitrarily low ρ
- $\rho = 1$ is improbable for matches

Match Likelihood

- ρ is just a statistic
- we need a probability distribution on [0, 1], e.g. Beta distribution

$$p_1(\rho) = \frac{1}{B(\alpha, \beta)} |\rho|^{\alpha - 1} (1 - |\rho|)^{\beta - 1}$$

- note that uniform distribution is obtained for $\alpha = \beta = 1$
- when $\alpha=2$ and $\beta=1$ then $p_1(\cdot)=2|\rho|$



- if we chose $\beta=1$ then the mode was at $\rho=1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with negative log-likelihood

$$V_1(\rho(l,r)) = -\log p_1(\rho(l,r))$$
(35)

0.2

0.4

0.6

ρ

0.8

 α =10. β =1.5

5

 $\mathsf{Be}(\rho;\alpha,\beta)$

smaller is better

we may also define similarity (and negative log-likelihood $V_0(\rho(l,r))$) for non-matches

► A Principled Approach to Matching

- ullet given matching M what is the likelihood of observed data D?
- data all pairwise costs in matching table T
- matches pairs $p_i = (l_i, r_i), i = 1, \ldots, n$
- ullet matching: partitioning matching table T to matched M and excluded E pairs

$$T = M \cup E, \quad M \cap E = \emptyset$$

• matching cost (negative log-likelihood, smaller is better)

$$V(D\mid M) = \sum_{p\in M} V_1(D\mid p) + \sum_{p\in E} V_0(D\mid p)$$

$$V_1(D \mid p)$$
 — negative log-probability of data D at $\underline{\mathsf{matched}}$ pixel p (35) $V_0(D \mid p)$ — ditto at $\underline{\mathsf{unmatched}}$ pixel p \longrightarrow 170 and \longrightarrow 171

matching problem

$$M^* = \arg\min_{M \in \mathcal{M}(T)} V(D \mid M)$$

 $\mathcal{M}(T)$ – the set of all matchings in table T

symmetric: formulated over pairs, invariant to left ↔ right image swap

►(cont'd) Log-Likelihood Ratio

- we need to reduce matching to a standard polynomial-complexity problem
- we convert the matching cost to an 'easier' sum

$$V(D \mid M) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p) - \sum_{p \in M} V_0(D \mid p)$$

$$= \sum_{p \in M} \underbrace{\left(V_1(D \mid p) - V_0(D \mid p)\right)}_{-L(D \mid p)} + \underbrace{\sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p)}_{p \in M}$$

$$= \sum_{p \in M} \underbrace{\left(V_1(D \mid p) - V_0(D \mid p)\right)}_{-L(D \mid p)} + \underbrace{\sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p)}_{p \in M}$$

hence

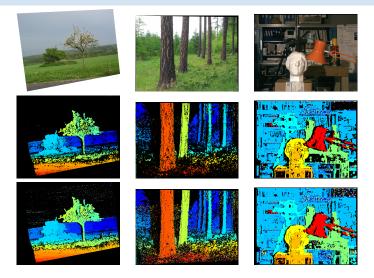
$$\arg\min_{M\in\mathcal{M}(T)}V(D\mid M) = \arg\max_{M\in\mathcal{M}(T)}\sum_{p\in M}L(D\mid p) \tag{36}$$

$$L(D\mid p) - \text{logarithm of matched-to-unmatched likelihood ratio (bigger is better)}$$

why this way: we want to use maximum-likelihood but our measurement is all data D

- (36) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem
 - it must contain no pairs p with $L(D \mid p) < 0$
 - use Hungarian (Munkres) algorithm and threshold the result based on $L(D \mid p) > T$
 - or step back: sacrifice symmetry to speed and use dynamic programming

Some Results for the Maximum-Likelihood (ML) Matching



- unlike the WTA we can efficiently control the density/accuracy tradeoff
- ullet middle row: threshold T for $L(D\mid p)$ set to achieve error rate of 3% (and 61% density results)
- ullet bottom row: threshold T set to achieve density of 76% (and 4.3% error rate results)

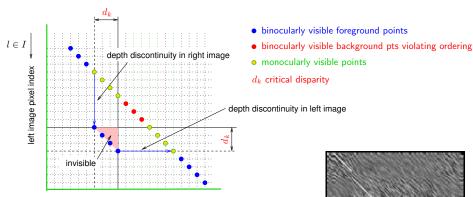
▶Basic Stereoscopic Matching Models

- notice many small isolated errors in the ML matching
- we need a stronger model

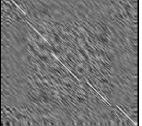
Potential models for M (from weaker to stronger)

- 1. Uniqueness: Every image point matches at most once
 - excludes semi-transparent objects
 - used by the ML matching algorithm (but not by the WTA algorithm)
- 2. Monotonicity: Matched pixel ordering is preserved
 - For all $(i,j) \in M, (k,l) \in M, \quad k > i \Rightarrow l > j$ Notation: $(i,j) \in M$ or j = M(i) left-image pixel i matches right-image pixel i
 - Notation: $(i, j) \in M$ or j =
 - excludes thin objects close to the cameras
 - used by 3LDP [SP]
- 3. Coherence: Objects occupy well-defined 3D volumes
 - concept by [Prazdny 85]
 - algorithms are based on image/disparity map segmentation
 - a popular model (segment-based, bilateral filtering and their successors)
 - used by Stable Segmented 3LDP [Aksoy et al. PRRS 2008]
- 4. Continuity: There are no occlusions or self-occlusions
 - too strong, except in some applications

Understanding Occlusion Structure in Matching Table



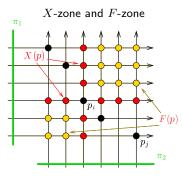
this leads to the concept of 'forbidden zone'



right image pixel index

 $r \in J$

► Formally: Uniqueness and Ordering in Matching Table *T*



$$p_j \notin X(p_i), \quad p_j \notin F(p_i)$$

Uniqueness Constraint:

A set of pairs $M=\{p_i\}_{i=1}^n$, $p_i\in T$ is a matching iff $\forall p_i,p_j\in M:\ p_j\notin X(p_i).$

 $X\text{-zone, }p_i\not\in X(p_i)$

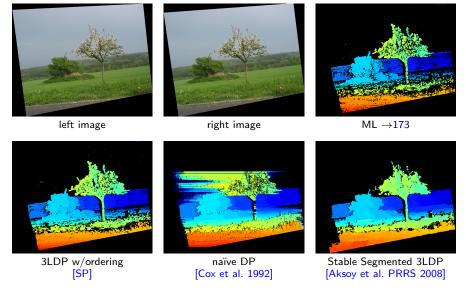
Ordering Constraint:

Matching M is monotonic iff $\forall p_i, p_i \in M: p_i \notin F(p_i).$

F-zone, $p_i \not\in F(p_i)$

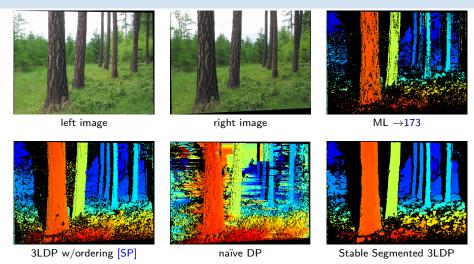
- ordering constraint: matched points form a monotonic set in both images
- ordering is a powerful constraint: in $n\times n$ table we have monotonic matchings $O(4^n)\ll O(n!)$ all matchings
- \circledast 2: how many are there $\underline{\text{maximal}}$ monotonic matchings? (e.g. 27 for n=4; hard!)
- uniqueness constraint is a basic occlusion model
- ordering constraint is a weak continuity model and partly also an occlusion model
 - monotonic matching can be found by dynamic programming

Some Results: AppleTree



3LDP parameters $lpha_i,~V_{
m e}$ learned on Middlebury stereo data http://vision.middlebury.edu/stereo/

Some Results: Larch



- naïve DP does not model mutual occlusion
- but even 3LDP has errors in mutually occluded region
- Stable Segmented 3LDP has few errors in mutually occluded region since it uses a coherence model

Algorithm Comparison

Marroquin's Winner-Take-All (WTA →167)

- the ur-algorithm very weak model
- dense disparity map
- ullet $O(N^3)$ algorithm, simple but it rarely works

Maximum Likelihood Matching (ML ightarrow173)

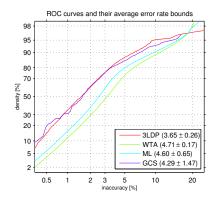
- semi-dense disparity map
- many small isolated errors
- models basic occlusion
- ullet $O(N^3\log(NV))$ algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

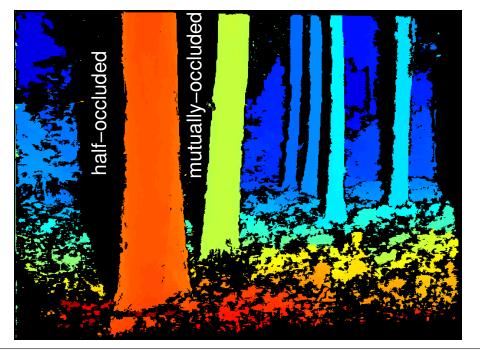
- semi-dense disparity map
 - models occlusion in flat, piecewise continuos scenes
 - has 'illusions' if ordering does not hold
 - $O(N^3)$ algorithm

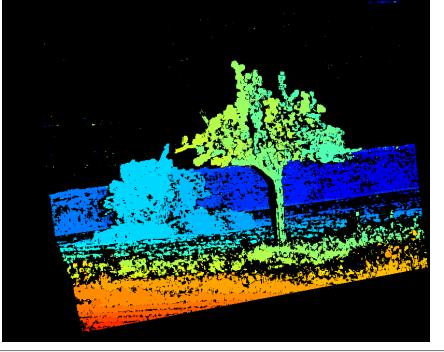
Stable Segmented 3LDP

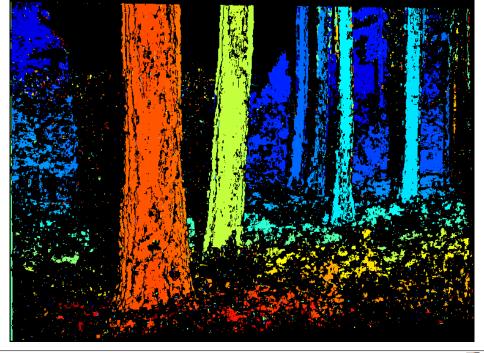
- better (fewer errors at any given density)
- $O(N^3 \log N)$ algorithm
- requires image segmentation itself a difficult task

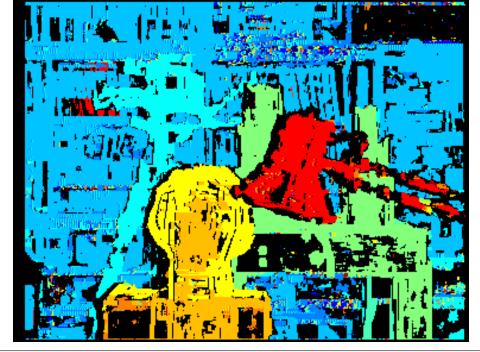


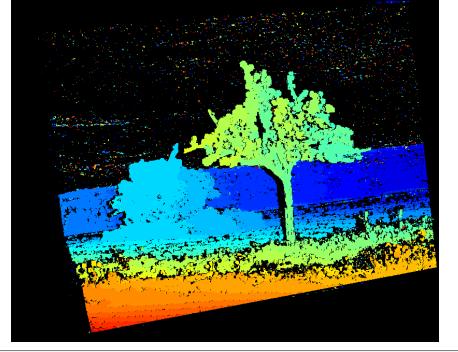
- ROC-like curve captures the density/accuracy tradeoff
- numbers: AUC (smaller is better)
 - GCS is the one used in the exercises
- more algorithms at http://vision.middlebury.edu/ stereo/(good luck!)

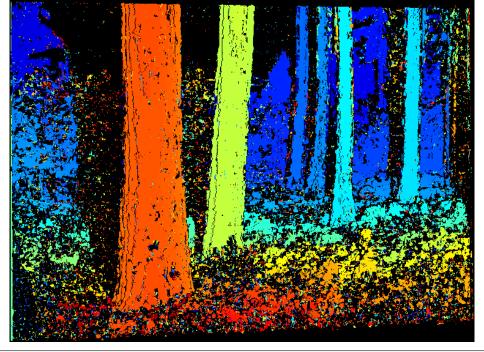


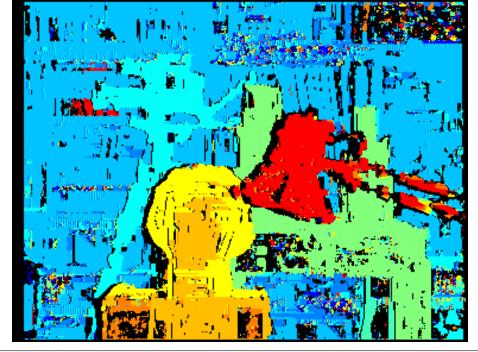


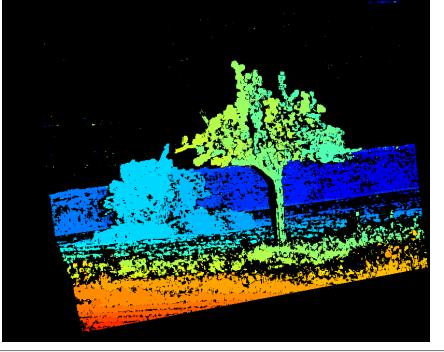


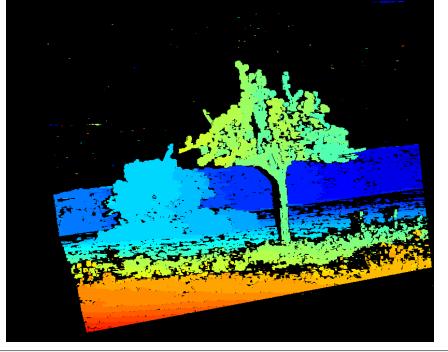


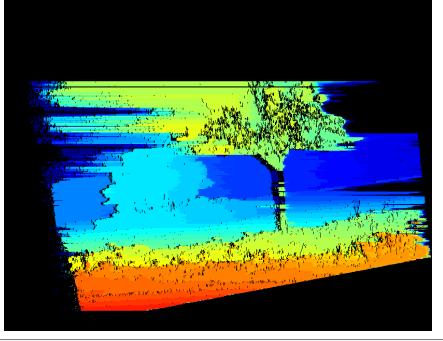


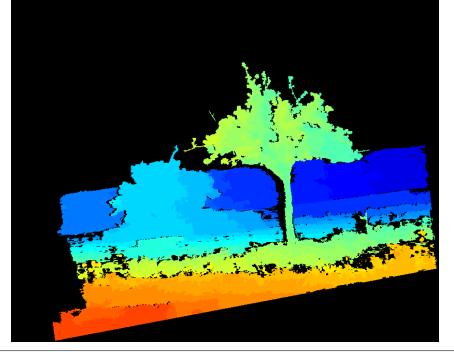












3D Computer Vision: enlarged figures

R. Šára, CMP; rev. 8-Jan-2019

3D Computer Vision: enlarged figures

R. Šára, CMP; rev. 8-Jan-2019

