Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

video

simplifications

- vanishing points restricted to the set of all pairwise segment intersections
- mother lines fixed by segment centroid (then θ_L uniquely given by λ_i)

3D Computer Vision: V. Optimization for 3D Vision (p. 126/189) のへや

- primitives = line segments
- latent variables
 - 1. each line has a vanishing point label $\lambda_i \in \{\emptyset, 1, 2\}, \ \emptyset$ represents an outlier
 - 2. 'mother line' parameters θ_L (they pass through their vanishing points)
- explicit variables
 - 1. two unknown vanishing points v_1 , v_2
- marginal proposals (v_i fixed, v_j proposed)
- minimal sample s = 2

 $\arg\min_{v_1,v_2,\Lambda,\theta_L} V(v_1,v_2,\Lambda,L \mid S)$

Module VI

3D Structure and Camera Motion

61Introduction

- Reconstructing Camera Systems
- Bundle Adjustment

covered by

- [1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
- [2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.

additional references

- D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In *Proc CVPR*, 2007
 - M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1–30, 2009.

► The Projective Reconstruction Theorem

Observation: Unless \mathbf{P}_i are constrained, then for any number of cameras $i = 1, \dots, k$

$$\underline{\mathbf{m}}_i \simeq \mathbf{P}_i \underline{\mathbf{X}} = \underbrace{\mathbf{P}_i \mathbf{H}^{-1}}_{\mathbf{P}'_i} \underbrace{\mathbf{H}}_{\underline{\mathbf{X}}'} = \mathbf{P}'_i \underline{\mathbf{X}}'$$

• when \mathbf{P}_i and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_i), they are given up to a common 3D homography \mathbf{H}

(translation, rotation, scale, shear, pure perspectivity)

• when cameras are internally calibrated (\mathbf{K}_i known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_i [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale)

Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{ij} = [\hat{\mathbf{t}}_{ij}]_{\times} \hat{\mathbf{R}}_{ij}$ and calibration matrices \mathbf{K}_i reconstruct the camera system \mathbf{P}_i , $i = 1, \dots, k$

 ${\rightarrow}80$ and ${\rightarrow}145$ on representing ${\bf E}$

We construct calibrated camera pairs $\hat{\mathbf{P}}_{ij} \in \mathbb{R}^{6,4} ext{ } ext{$

$$\hat{\mathbf{P}}_{ij} = \begin{bmatrix} \mathbf{K}_i^{-1} \hat{\mathbf{P}}_i \\ \mathbf{K}_j^{-1} \hat{\mathbf{P}}_j \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix} \in \mathbb{R}^{6, \epsilon}$$

singletons i, j correspond to graph nodes k nodes
 pairs ij correspond to graph edges p edges

 $\hat{\mathbf{P}}_{ij}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{ij}\mathbf{H}_{ij} = \mathbf{P}_{ij}$

$$\underbrace{\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix}}_{\mathbb{R}^{6,4}} \underbrace{\begin{bmatrix} \mathbf{R}_{ij} & \mathbf{t}_{ij} \\ \mathbf{0}^{\top} & s_{ij} \end{bmatrix}}_{\mathbf{H}_{ij} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\begin{bmatrix} \mathbf{R}_i & \mathbf{t}_i \\ \mathbf{R}_j & \mathbf{t}_j \end{bmatrix}}_{\mathbb{R}^{6,4}} \stackrel{\forall \mathbf{i}_j \stackrel{!}{=} \mathbb{R}_i^{\prime}}{\mathbf{t}_{\mathbf{i}_j} \stackrel{!}{=} \mathbf{c}_i^{\prime}}$$
(28)

(28) is a linear system of 24p eqs. in 7p + 6k unknowns 7p ~ (t_{ij}, R_{ij}, s_{ij}), 6k ~ (R_i, t_i)
each P_i appears on the right side as many times as is the degree of node P_i eg. P₅ 3-times

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 130/189) のへへ R. Šára, CMP; rev. 4-Dec-2018 🔮

▶cont'd

 $\begin{bmatrix} \mathbf{R}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{R}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \\ \mathbf{R}_j \end{bmatrix} \qquad \begin{bmatrix} \mathbf{t}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{t}_{ij} + s_{ij} \hat{\mathbf{t}}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_i \\ \mathbf{t}_j \end{bmatrix}$

• \mathbf{R}_{ij} and \mathbf{t}_{ij} can be eliminated:

Eq. (28) implies

$$\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j, \qquad \hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} = \mathbf{t}_j, \qquad s_{ij} > 0$$
(29)

- note transformations that do not change these equations assuming no error in $\hat{\mathbf{R}}_{ij}$ 1. $\mathbf{R}_i \mapsto \mathbf{R}_i \mathbf{R}$, 2. $\mathbf{t}_i \mapsto \sigma \mathbf{t}_i$ and $s_{ij} \mapsto \sigma s_{ij}$, 3. $\mathbf{t}_i \mapsto \mathbf{t}_i + \mathbf{R}_i \mathbf{t}$
- the global frame is fixed, e.g. by selecting

$$\mathbf{R}_1 = \mathbf{I}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \frac{1}{p} \sum_{i,j} s_{ij} = 1$$
 (30)

- rotation equations are decoupled from translation equations
- in principle, s_{ij} could correct the sign of $\hat{\mathbf{t}}_{ij}$ from essential matrix decomposition \rightarrow 80 but \mathbf{R}_i cannot correct the α sign in $\hat{\mathbf{R}}_{ij}$

 \Rightarrow therefore make sure all points are in front of cameras and constrain $s_{ij}>$ 0; \rightarrow 82

- + pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations)

otherwise intractable or numerically unstable

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 131/189) のへへ R. Šára, CMP; rev. 4-Dec-2018 🔮

Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j$, $i, j \in V$, $(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each. Per columns c = 1, 2, 3 of \mathbf{R}_i :

$$\hat{\mathbf{R}}_{ij}\mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \qquad \text{for all } i, j$$
(31)

• fix c and denote $\mathbf{r}^c = [\mathbf{r}_1^c, \mathbf{r}_2^c, \dots, \mathbf{r}_k^c]^\top c$ -th columns of all rotation matrices stacked; $\mathbf{r}^c \in \mathbb{R}^{3k}$ $\mathbf{D} \in \mathbb{R}^{3p,3k}$

- then (31) becomes $\mathbf{D} \mathbf{r}^c = \mathbf{0}$
- 3p equations for 3k unknowns $\rightarrow p \ge k$ in a 1-connected graph we have to fix $\mathbf{r_1^c} = [1,0,0]$
- **Ex:** (k = p = 3)Ê12

• must hold for any c

Idea:

[Martinec & Pajdla CVPR 2007]

1. find the space of all $\mathbf{r}^c \in \mathbb{R}^{3k}$ that solve (31) D is sparse, use [V,E] = eigs(D'*D,3,0); (Matlab)

- choose 3 unit orthogonal vectors in this space
- 3. find closest rotation matrices per cam. using SVD
- global world rotation is arbitrary

3 smallest eigenvectors

because $\|\mathbf{r}^c\| = 1$ is necessary but insufficient $\mathbf{R}^*_i = \mathbf{U}\mathbf{V}^\top$, where $\mathbf{R}_i = \mathbf{U}\mathbf{D}\mathbf{V}^\top$

Finding The Translation Component in Eq. (29)

cont'd

Linear equations in (29) and (30) can be rewritten to

$$\mathbf{Dt} = \mathbf{0}, \qquad \mathbf{t} = \begin{bmatrix} \mathbf{t}_1^\top, \mathbf{t}_2^\top, \dots, \mathbf{t}_k^\top, s_{12}, \dots, s_{ij}, \dots \end{bmatrix}^\top$$

for d = 3: $\mathbf{t} \in \mathbb{R}^{3k+p}$, $\mathbf{D} \in \mathbb{R}^{3p,3k+p}$ is sparse

$$\mathbf{t}^* = \operatorname*{arg\,min}_{\mathbf{t},\,s_{ij}>0} \mathbf{t}^\top \mathbf{D}^\top \mathbf{D} \mathbf{t}$$

• this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

• but check the rank first!

► Solving Eq. (29) by Stepwise Gluing

Given: Calibration matrices \mathbf{K}_j and tentative correspondences per camera <u>triples</u>. Initialization

- 1. initialize camera cluster C with P_1 , P_2 ,
- 2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm $\rightarrow 87$
- 3. construct camera pair

$$\mathbf{P}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \ \mathbf{P}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

- 4. compute 3D reconstruction $\{X_i\}$ per match from $M_{12} \rightarrow 104$
- 5. initialize point cloud X with $\{X_i\}$ satisfying chirality constraint $z_i > 0$ and apical angle constraint $|\alpha_i| > \alpha_T$

Attaching camera $P_j \notin C$

- **1**. select points \mathcal{X}_i from \mathcal{X} that have matches to P_i
- 2. estimate \mathbf{P}_j using \mathcal{X}_j , RANSAC with the 3-pt alg. (P3P), projection errors \mathbf{e}_{ij} in $\mathcal{X}_j \longrightarrow 66$
- 3. reconstruct 3D points from all tentative matches from P_j to all P_l , $l \neq k$ that are <u>not</u> in \mathcal{X}
- 4. filter them by the chirality and apical angle constraints and add them to $\ensuremath{\mathcal{X}}$
- 5. add P_j to C
- 6. perform bundle adjustment on ${\mathcal X}$ and ${\mathcal C}$

coming next \rightarrow 136

Thank You