Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is
known, square pixel.

iter: 10 (acc TOT=0.0%, HMC=hal% ); Eavg = 14.597 ° p”mltlves_: line segments
— = el e latent variables
= - S o . - .
4o L 1. each line has a vanishing point label
- = Xi € {0,1,2}, 0 represents an outlier
Ean f-ﬂﬂ 2. ‘mother line’ parameters 6, (they pass
J r_j,,ﬂ;\x— N through their vanishing points)

e explicit variables
Mﬁpﬂ 1. two unknown vanishing points v1, va

W e marginal proposals (v; fixed, v; proposed)
® minimal sample s = 2

simplifications

® vanishing points restricted to the set of all
pairwise segment intersections
® mother lines fixed by segment centroid (then 0,

uniquely given by X;) arg min  V(vi,v2, A, L|S)
v1,v2,A,0L
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Module VI

3D Structure and Camera Motion

@ Introduction

@Reconstructing Camera Systems
®Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop
on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In
Proc CVPR, 2007

@ M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment.
ACM Trans Math Software 36(1):1-30, 2009.
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» The Projective Reconstruction Theorem

Observation: Unless P; are constrained, then for any number of cameras i = 1,...,k

m ~P,X=P,H 'HX =P, X
——
P/ X/’

e when P; and X are both determined from correspondences (including calibrations
K;), they are given up to a common 3D homography H
(translation, rotation, scale, shear, pure perspectivity)

mi ma X )¢

e when cameras are internally calibrated (K; known) then H is restricted to a similarity
since it must preserve the calibrations K; [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]
(translation, rotation, scale)
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»Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices Ei]’ = [Eij]XRi]' and

calibration matrices K; reconstruct the camera system P;, i =1,...,k
—80 and —145 on representing E

We construct calibrated camera pairs P;; € R®* 128

. Kflp,} { I 0] 64
Py=| 5= |a | €R®
! [Kjlpj Ry ti

® singletons ¢, j correspond to graph nodes k nodes
® pairs ij correspond to graph edges p edges

P, En P P; Py

P.; are in different coordinate systems but these are related by S|m|lar|t|es iHij = Py

P;

RrR6,4 H;_y cRr4:4 R6,4

® (28) is a linear system of 24p eqgs. in Tp 4+ 6k unknowns Tp ~ (tij, Rij, 8:5), 6k ~ (Rs, t;)
e each P; appears on the right side as many times as is the degree of node P; eg. P5 3-times
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»cont’d

L Ri;; | _ [Rs tij |t
Fa. (28) implies [Rini.i] B {Ra] |:Rijtij +.9,-,_,-E1-J B L:j]

e R;; and t;; can be eliminated:

RiRi =R,  Ryti+siyty=t;, s3>0 (29)
® note transformations that do not change these equations assuming no error in Ry
1. R;— R;R, 2. t;— ot; and s — 0555, 3. ti—t;+Rit

o the global frame is fixed, e.g. by selecting

k
R =1, th =0, %ZSU =1 (30)
i=1 W]

® rotation equations are decoupled from translation equations
® in principle, s;; could correct the sign of Eij from essential matrix decomposition —80

but R; cannot correct the a sign in R;;
= therefore make sure all points are in front of cameras and constrain s;; > 0; —82

+ pairwise correspondences are sufficient
— suitable for well-distributed cameras only (dome-like configurations)
otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve RijR; =R, i,j € V, (i,j) € E where R are a 3 x 3 rotation matrix each.
Per columns ¢ =1, 2,3 of R;:

Rir{ —r; =0, for all 4, j (31)
e fix ¢ and denote r¢ = [I‘i, rs,..., I‘H T sth columns of all rotation matrices stacked; r® € R3F
e then (31) becomes Dr¢ =0 D € R37:3F
e 3p equations for 3k unknowns — p > k in a 1-connected graph we have to fix r{ = [1,0, 0]
Ex: (k=p=23)
Rur(j — r§ =0 R12 —I 0 I'lf
—  Roggr§—r;=0 — Dr'=]0 Ry -I||ri|=0
A - c
Risri —r5=0 Ris 0 —I1 1%

e must hold for any ¢

Idea: [Martinec & Pajdla CVPR 2007]
1. find the space of all r¢ € R3F that solve (31) D is sparse, use [V,E] = eigs(D’#D,3,0); (Matlab)
2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD  because ||r®|| = 1 is necessary but insufficient

L . R; =UV', where R; = UDV "
o global world rotation is arbitrary '
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Finding The Translation Component in Eq. (29)
From (29) and (30):

d < 3 — rank of camera center set, p — #pairs, k — #cameras
k

Rijtl‘ + Sijf]ij tj =0, Zti =0, ZSW’ =Dp, Sij > 0, t; € Rd
T~ i=1 i,j

e inrank d: d-p-+d+ 1 equations for d - k + p unknowns — p > % def (d, k)
Ex: Chains and circuits construction from sticks of known orientation and unknown length?
p=k—1 k=p=3 k=p=4

k=p>4

k < 2 for any d 3 > d > 2: non-collinear ok 3 > d > 3: non-planar ok 32>d >k — 1: impossible
e equations insufficient for chains, trees, or when d = 1

collinear cameras
e 3-connectivity implies sufficient equations for d = 3

cams. in general pos. in 3D
— s-connected graph has p > [%] edges for s > 2, hence p > [%] > Q(3,k) = % -2
e 4-connectivity implies sufficient eqns. for any k when d = 2  coplanar cams

— since p > [2k] > Q(2,k) =2k —3

— maximal planar tringulated graphs have p = 3k — 6

and give a solution for k > 3 maximal planar triangulated graph example:
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cont’d

Linear equations in (29) and (30) can be rewritten to
Dt =0,  t=[t]{, b3, ..,t], s12, .-, 85, -]
ford=3: teR3**P, D € R3"3%*P s sparse

t"=argmint D' Dt
t,s;;>0

e this is a quadratic programming problem (mind the constraints!)

z
t

zeros (3*k+p,1);
quadprog(D.’*D, z, diag([zeros(3+*k,1); -ones(p,1)]), z);

e but check the rank first!
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»Solving Eq. (29) by Stepwise Gluing

Given: Calibration matrices K; and tentative correspondences per camera triples.

Initialization
1. initialize camera cluster C with Py, P,

2. find essential matrix E12 and matches
M2 by the 5-point algorithm —87

3. construct camera pair

P,=Ki[I 0], P;=Kz[R t]

4. compute 3D reconstruction {X;} per
match from Mo —104

5. initialize point cloud X with {X;}
satisfying chirality constraint z; > 0

and apical angle constraint |a;| > ar exaty LQ&{; LZ ' 4 L()4 ?

Attaching camera P; ¢ C
1. select points X from X that have matches to P;
2. estimate P; using X;, RANSAC with the 3-pt alg. (P3P), projection errors e;; in X; —66
3. reconstruct 3D points from all tentative matches from P; to all P}, [ # k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next —136
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