Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

video
simplifications

- vanishing points restricted to the set of all pairwise segment intersections
- mother lines fixed by segment centroid (then θ_{L} uniquely given by λ_{i})
- primitives $=$ line segments
- latent variables

1. each line has a vanishing point label $\lambda_{i} \in\{\emptyset, 1,2\}, \emptyset$ represents an outlier
2. 'mother line' parameters θ_{L} (they pass through their vanishing points)

- explicit variables

1. two unknown vanishing points v_{1}, v_{2}

- marginal proposals (v_{i} fixed, v_{j} proposed)
- minimal sample $s=2$

$$
\arg \min _{v_{1}, v_{2}, \Lambda, \theta_{L}} V\left(v_{1}, v_{2}, \Lambda, L \mid S\right)
$$

Module VI

3D Structure and Camera Motion

6.1) Introduction
6.2 Reconstructing Camera Systems
6.3Bundle Adjustment
covered by
[1] [H\&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
[2] Triggs, B. et al. Bundle Adjustment-A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.
additional referencesD. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1-30, 2009.

- The Projective Reconstruction Theorem

Observation: Unless \mathbf{P}_{i} are constrained, then for any number of cameras $i=1, \ldots, k$

$$
\underline{\mathbf{m}}_{i} \simeq \mathbf{P}_{i} \underline{\mathbf{X}}=\underbrace{\mathbf{P}_{i} \mathbf{H}^{-1}}_{\mathbf{P}_{i}^{\prime}} \underbrace{\mathbf{H} \underline{\mathbf{X}}}_{\underline{\mathbf{x}}^{\prime}}=\mathbf{P}_{i}^{\prime} \underline{\mathbf{X}}^{\prime}
$$

- when \mathbf{P}_{i} and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_{i}), they are given up to a common 3D homography \mathbf{H}
(translation, rotation, scale, shear, pure perspectivity)

- when cameras are internally calibrated (\mathbf{K}_{i} known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_{i}
[H\&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale)

- Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{i j}=\left[\hat{\mathbf{t}}_{i j}\right]_{\times} \hat{\mathbf{R}}_{i j}$ and calibration matrices \mathbf{K}_{i} reconstruct the camera system $\mathbf{P}_{i}, i=1, \ldots, k$
$\rightarrow 80$ and $\rightarrow 145$ on representing \mathbf{E}

We construct calibrated camera pairs $\hat{\mathbf{P}}_{i j} \in \mathbb{R}^{6,4} \rightarrow 128$

$$
\hat{\mathbf{P}}_{i j}=\left[\begin{array}{c}
\mathbf{K}_{i}^{-1} \hat{\mathbf{P}}_{i} \\
\mathbf{K}_{j}^{-1} \hat{\mathbf{P}}_{j}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right] \in \mathbb{R}^{6,4}
$$

- singletons i, j correspond to graph nodes
k nodes
- pairs $i j$ correspond to graph edges
$\hat{\mathbf{P}}_{i j}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{i j} \mathbf{H}_{i j}=\mathbf{P}_{i j}$

$$
\underbrace{\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \tag{28}\\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right]}_{\mathbb{R}^{6,4}} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{i j} & \mathbf{t}_{i j} \\
\mathbf{0}^{\top} & s_{i j}
\end{array}\right]}_{\mathbf{H}_{i j} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i} \\
\mathbf{R}_{j} & \mathbf{t}_{j}
\end{array}\right]}_{\mathbb{R}^{6,4}} \begin{aligned}
& \mathbf{R}_{i_{j}}=\mathbb{R}_{\mathbf{i}} \\
& \boldsymbol{t}_{\mathbf{i}_{\mathrm{j}}}=\boldsymbol{t}_{i}
\end{aligned}
$$

- (28) is a linear system of $24 p$ eqs. in $7 p+6 k$ unknowns $\quad 7 p \sim\left(\mathbf{t}_{i j}, \mathbf{R}_{i j}, s_{i j}\right), 6 k \sim\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$
- each \mathbf{P}_{i} appears on the right side as many times as is the degree of node \mathbf{P}_{i} eg. P_{5} 3-times

-cont'd

Eq. (28) implies

$$
\left[\begin{array}{c}
\mathbf{R}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{R}_{i} \\
\mathbf{R}_{j}
\end{array}\right] \quad\left[\begin{array}{c}
\mathbf{t}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i j}+s_{i j} \hat{\mathbf{t}}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{i} \\
\mathbf{t}_{j}
\end{array}\right]
$$

- $\mathbf{R}_{i j}$ and $\mathrm{t}_{i j}$ can be eliminated:

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, \quad \hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}=\mathbf{t}_{j}, \quad s_{i j}>0 \tag{29}
\end{equation*}
$$

- note transformations that do not change these equations
assuming no error in $\hat{\mathbf{R}}_{i j}$

$$
\text { 1. } \quad \mathbf{R}_{i} \mapsto \mathbf{R}_{i} \mathbf{R}, \quad \text { 2. } \quad \mathbf{t}_{i} \mapsto \sigma \mathbf{t}_{i} \text { and } s_{i j} \mapsto \sigma s_{i j}, \quad \text { 3. } \quad \mathbf{t}_{i} \mapsto \mathbf{t}_{i}+\mathbf{R}_{i} \mathbf{t}
$$

- the global frame is fixed, e.g. by selecting

$$
\begin{equation*}
\mathbf{R}_{1}=\mathbf{I}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \frac{1}{p} \sum_{i, j} s_{i j}=1 \tag{30}
\end{equation*}
$$

- rotation equations are decoupled from translation equations
- in principle, $s_{i j}$ could correct the sign of $\hat{\mathbf{t}}_{i j}$ from essential matrix decomposition but \mathbf{R}_{i} cannot correct the α sign in $\hat{\mathbf{R}}_{i j}$
\Rightarrow therefore make sure all points are in front of cameras and constrain $s_{i j}>0 ; \rightarrow 82$
+ pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations)
otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, i, j \in V,(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each. Per columns $c=1,2,3$ of \mathbf{R}_{j} :

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \quad \text { for all } i, j \tag{31}
\end{equation*}
$$

- fix c and denote $\mathbf{r}^{c}=\left[\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \ldots, \mathbf{r}_{k}^{c}\right]^{\top} \quad c$-th columns of all rotation matrices stacked; $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$
- then (31) becomes $\mathbf{D} \mathbf{r}^{c}=\mathbf{0}$
$\mathbf{D} \in \mathbb{R}^{3 p, 3 k}$
- $3 p$ equations for $3 k$ unknowns $\rightarrow p \geq k$
in a 1-connected graph we have to fix $\mathbf{r}_{1}^{c}=[1,0,0]$
Ex: $(k=p=3)$

Idea:

1. find the space of all $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$ that solve (31)
\mathbf{D} is sparse, use $[\mathrm{V}, \mathrm{E}]=\operatorname{eigs}\left(\mathrm{D}^{\prime} * \mathrm{D}, 3,0\right)$; (Matlab)
2. choose 3 unit orthogonal vectors in this space

3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD

- global world rotation is arbitrary

Finding The Translation Component in Eq. (29)

From (29) and (30): $\quad d \leq 3$ - rank of camera center set, $p-\#$ pairs, $k-$ \#cameras

- in rank $d: d \cdot p+d+1$ equations for $d \cdot k+p$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1} \stackrel{\text { def }}{=} Q(d, k)$

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

$$
p=k-1
$$

$$
k=p=3
$$

$k \leq 2$ for any d
$3 \geq d \geq 2$: non-collinear ok

$$
3 \geq d \geq 3: \text { non-planar ok }
$$

$$
3 \geq d \geq k-1: \text { impossible }
$$

- equations insufficient for chains, trees, or when $d=1$
collinear cameras
- 3-connectivity implies sufficient equations for $d=3$
cams. in general pos. in 3D
- s-connected graph has $p \geq\left\lceil\frac{s k}{2}\right\rceil$ edges for $s \geq 2$, hence $p \geq\left\lceil\frac{3 k}{2}\right\rceil \geq Q(3, k)=\frac{3 k}{2}-2$
- 4-connectivity implies sufficient eqns. for any k when $d=2$
coplanar cams
- since $p \geq\lceil 2 k\rceil \geq Q(2, k)=2 k-3$
- maximal planar tringulated graphs have $p=3 k-6$ and give a solution for $k \geq 3$
maximal planar triangulated graph example:

cont'd

Linear equations in (29) and (30) can be rewritten to

$$
\mathbf{D t}=\mathbf{0}, \quad \mathbf{t}=\left[\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}, \ldots, \mathbf{t}_{k}^{\top}, s_{12}, \ldots, s_{i j}, \ldots\right]^{\top}
$$

for $d=3: \quad \mathbf{t} \in \mathbb{R}^{3 k+p}, \quad \mathbf{D} \in \mathbb{R}^{3 p, 3 k+p} \quad$ is sparse

$$
\mathbf{t}^{*}=\underset{\mathbf{t}, s_{i j}>0}{\arg \min } \mathbf{t}^{\top} \mathbf{D}^{\top} \mathbf{D} \mathbf{t}
$$

- this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

- but check the rank first!

Solving Eq．（29）by Stepwise Gluing

Given：Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples． Initialization

1．initialize camera cluster \mathcal{C} with P_{1}, P_{2} ，
2．find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5 －point algorithm $\rightarrow 87$
3．construct camera pair

$$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

4．compute 3D reconstruction $\left\{X_{i}\right\}$ per match from $M_{12} \quad \rightarrow 104$
5．initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$ and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

exam test 23.1. 2019

Attaching camera $P_{j} \notin \mathcal{C}$

1．select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}
2．estimate \mathbf{P}_{j} using \mathcal{X}_{j} ，RANSAC with the 3－pt alg．（P3P），projection errors $\mathbf{e}_{i j}$ in $\mathcal{X}_{j} \quad \rightarrow 66$
3．reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4．filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5．add P_{j} to \mathcal{C}
6．perform bundle adjustment on \mathcal{X} and \mathcal{C} coming next $\rightarrow 136$

Thank You

