How To Find the Global Maxima (Modes) of a PDF?

- averaged over 10^{4} trials
- number of proposals before $\left|x-x_{\text {true }}\right| \leq$ step
- given the function $p(x)$ at left
p.d.f. on $[0,1]$, mode at 0.1 consider several methods:

1. exhaustive search
```
step \(=1 /\) (iterations-1);
for \(\mathrm{x}=0:\) step:1
if \(p(x)\) > bestp
bestx \(=x\); bestp \(=p(x)\);
end
end
```

- slow algorithm (definite quantization)
- fast to implement

2. randomized search with uniform sampling
```
while t < iterations
x = rand(1);
if p(x) > bestp
        bestx = x; bestp = p(x);
        end
        t = t+1; % time
end
```

3. random sampling from $p(x)$ (Gibbs sampler)

- faster algorithm - fast to implement but often infeasible (e.g. when $p(x)$ is data dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling

- almost as fast (with care) - not so fast to implement
- rarely infeasible - RANSAC belongs here

How To Generate Random Samples from a Complex Distribution？

－red：probability density function $\pi(x)$ of the toy distribution on the unit interval target distribution

$$
\begin{gathered}
\pi(x)=\sum_{i=1}^{4} \gamma_{i} \operatorname{Be}\left(x ; \alpha_{i}, \beta_{i}\right), \quad \sum_{i=1}^{4} \gamma_{i}=1, \gamma_{i} \geq 0 \\
\operatorname{Be}(x ; \alpha, \beta)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1}
\end{gathered}
$$

－alg．for generating samples from $\operatorname{Be}(x ; \alpha, \beta)$ is known
－\Rightarrow we can generate samples from $\pi(x)$ how？
－suppose we cannot sample from $\pi(x)$ but we can sample from some＇simple＇ distribution $q\left(x \mid x_{0}\right)$ ，given the last sample x_{0}（blue）proposal distribution

$$
q\left(x \mid x_{0}\right)= \begin{cases}\mathrm{U}_{0,1}(x) & \text { (independent) uniform sampling } \\ \operatorname{Be}\left(x ; \frac{x_{0}}{T}+1, \frac{1-x_{0}}{T}+1\right) & \text { 'beta' diffusion (crawler) } T \text { - temperature } \\ \pi(x) & \text { (independent) Gibbs sampler }\end{cases}
$$

－note we have unified all the random sampling methods from the previous slide
－how to redistribute proposal samples $q\left(x \mid x_{0}\right)$ to target distribution $\pi(x)$ samples？

- Metropolis-Hastings (MH) Sampling

C - configuration (of all variable values)
eg. $C=x$ and $\pi(C)=\pi(x)$ from $\rightarrow 116$
Goal: Generate a sequence of random samples $\left\{C_{t}\right\}$ from target distribution $\pi(C)$

- setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure

1. given C_{t}, draw a random sample S from $q\left(S \mid C_{t}\right)$

2. compute acceptance probability
q may use some information from C_{t} (Hastings)

$$
a=\min \left\{1, \frac{\pi(S)}{\pi\left(C_{t}\right)} \cdot \frac{q\left(C_{t} \mid S\right)}{q\left(S \mid C_{t}\right)}\right\}
$$

3. draw a random number u from unit-interval uniform distribution $\mathrm{U}_{0,1}$
4. if $u \leq a$ then $C_{t+1}:=S$ else $C_{t+1}:=C_{t}$

‘Programming’ an MH sampler

1. design a proposal distribution (mixture) q and a sampler from q
2. write functions $q\left(C_{t} \mid S\right)$ and $q\left(S \mid C_{t}\right)$ that are proper distributions not always simple

Finding the mode

- remember the best sample fast implementation but must wait long to hit the mode
- use simulated annealing very slow
- start local optimization from the best sample good trade-off between speed and accuracy an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)

MH Sampling Demo

sampling process (video, $7: 33,100 \mathrm{k}$ samples)

- blue point: current sample
- green circle: best sample so far quality $=\pi(x)$
- histogram: current distribution of visited states
- the vicinity of modes are the most often visited states

initial sample

final distribution of visited states

Demo Source Code (Matlab)

```
function x = proposal_gen(x0)
% proposal generator q(x | x0)
    T = 0.01; % temperature
    x = betarnd(x0/T+1, (1-x0)/T+1);
end
function p = proposal_q(x, x0)
% proposal distribution q(x | x0)
    T = 0.01;
    p = betapdf(x, x0/T+1, (1-x0)/T+1);
end
function p = target_p(x)
% target distribution p(x)
    % shape parameters:
    a = [2 40 100 6];
    b}=[\begin{array}{lllll}{10}&{40}&{20}&{1}\end{array}]
    % mixing coefficients:
    w = [11 0.4 0.253 0.50]; w = w/sum(w);
    p = 0;
    for i = 1:length(a)
    p = p + w(i)*betapdf(x,a(i),b(i));
    end
end
```

```
%% DEMO script
k = 10000; % number of samples
X = NaN(1,k); % list of samples
x0 = proposal_gen(0.5);
for i = 1:k
    x1 = proposal_gen(x0);
    a = target_p(x1)/target_p(x0) * ...
        proposal_q(x0,x1)/proposal_q(x1,x0);
    if rand(1) < a
        X(i) = x1; x0 = x1;
    else
    X(i) = x0;
    end
end
figure(1)
x = 0:0.001:1;
plot(x, target_p(x), 'r', 'linewidth',2);
hold on
binw = 0.025; % histogram bin width
n = histc(X, 0:binw:1);
h = bar(0:binw:1, n/sum(n)/binw, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel 'x'
ylabel 'p(x)'
title 'MH demo'
hold off
```


-Stripping MH Down

- when we are interested in the best sample only... and we need fast data exploration...

Simplified sampling procedure

1. given C_{t}, draw a random sample S from $q\left(S \mid C_{t}\right) q(S)$ independent sampling no use of information from C_{t}
2. compute acceptance probability

$$
a=\min \left\{1, \frac{\pi(S)}{\pi\left(C_{t}\right)} \cdot \frac{q\left(C_{t} \mid S\right)}{q\left(S \mid C_{t}\right)}\right\}
$$

3. draw a random number u from unit-interval uniform distribution $U_{0,1}$
4. if $u \leq a$ then $C_{t+1}:=S$ else $C_{t+1}:=C_{t}$
5. if $\pi(S)>\pi\left(C_{\text {best }}\right)$ then remember $C_{\text {best }}:=S$

Steps 2-4 make no difference when waiting for the best sample

- ... but getting a good accuracy sample might take very long this way
- good overall exploration but slow convergence in the vicinity of a mode where C_{t} could serve as an attractor
- cannot use the past generated samples to estimate any parameters
- we will fix these problems by (possibly robust) 'local optimization'

-Putting Some Clothes Back: RANSAC [Fischler \& Bolles 1981]

1. $\underline{\text { primitives }}=$ elementary measurements

- points in line fitting
- matches in epipolar geometry estimation

2. configuration $=\underline{s \text {-tuple of primitives } \quad \text { minimal subsets necessary for parameter estimate }}$

the minimization will be over a discrete set:

- of point pairs in line fitting (left)
- of match 7-tuples in epipolar geometry estimation

3. proposal distribution $q(\cdot)$ is then given by the empirical distribution of s-tuples:
a) propose s-tuple from data independently $q\left(S \mid C_{t}\right)=q(S)$
i) q uniform $q(S)=\binom{m n}{s}^{-1} \quad \operatorname{MAPSAC}(p(S)$ includes the prior $)$
ii) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)
b) solve the minimal geometric problem \mapsto parameter proposal

- pairs of points define line distribution from $p(\mathbf{n} \mid X)$ (left)
- random correspondence tuples drawn uniformly propose samples of \mathbf{F} from a data-driven distribution $q(\mathbf{F} \mid M)$

4. local optimization from promising proposals
5. stopping based on the probability of mode-hitting

-RANSAC with Local Optimization and Early Stopping

1. initialize the best sample as empty $C_{\text {best }}:=\emptyset$ and time $t:=0$
2. estimate the number of needed proposals as $N:=\left(\frac{n}{s}\right) n-$ No. of primitives, s - minimal sample size
3. while $t \leq N$:
a) propose a minimal random sample S of size s from $q(S)$

b) if $\pi(S)>\pi\left(C_{\text {best }}\right)$ then
i) update the best sample $C_{\text {best }}:=S \quad \pi(S)$ marginalized as in (26); $\pi(S)$ includes a prior \Rightarrow MAP
ii) threshold-out inlier using e_{T} from (27)...

iii) start local optimization from the inliers of $C_{\text {best }}$ LM optimization with robustified $(\rightarrow 113)$ Sampson error possibly weighted by posterior $\pi\left(m_{i j}\right)$ [Chum et al. 2003]

$\mathrm{LO}\left(C_{\text {best }}\right)$
iv) update $C_{\text {best }}$, update inliers using (27), re-estimate N from inlier counts $\quad \rightarrow 123$ for derivation c) $t:=t+1$

$$
N=\frac{\log (1-P)}{\log \left(1-\varepsilon^{s}\right)}, \quad \varepsilon=\frac{\left|\operatorname{inliers}\left(C_{\text {best }}\right)\right|}{\sim \pi},
$$

4. output $C_{\text {best }}$

$$
\begin{aligned}
& \text { primitive set } \\
& \text { size }=u
\end{aligned}
$$

- see ©MPV course for RANSAC details
see also [Fischler \& Bolles 1981], [25 years of RANSAC]

-Stopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?

this will tell us nothing about the accuracy of the result N-th first.f'me
$P \ldots$ probability that at least one proposal is an all-inlier $1-P \ldots$ all previous N proposals were bad $\varepsilon \ldots$ the fraction of inliers among primitives, $\varepsilon \leq 1$
s... minimal sample size (2 in line fitting, 7 in 7 -point algorithm)

$$
N \geq \frac{\log (1-P)}{\log \left(1-\varepsilon^{s}\right)}
$$

- ε^{s}... proposal does not contain an outlier
- $1-\varepsilon^{s} \ldots$ proposal contains at least one outlier
- $\left(1-\varepsilon^{s}\right)^{N} \ldots N$ previous proposals contained an outlier $=1-P$ $1-P=\left(1-\varepsilon^{S}\right)^{N}$

N for $s=7$		
	P	
ε	0.8	0.99
0.5	205	590
0.2	$1.3 \cdot 10^{5}$	$3.5 \cdot 10^{5}$
0.1	$1.6 \cdot 10^{7}$	$4.6 \cdot 10^{7}$

- N can be re-estimated using the current estimate for ε (if there is LO, then after LO) the quasi-posterior estimate for ε is the average over all samples generated so far - this shows we have a good reason to limit all possible matches to tentative matches only
- for $\varepsilon \rightarrow 0$ we gain nothing over the standard MH-sampler stopping criterion

Example Matching Results for the 7-point Algorithm with RANSAC

- notice some wrong matches (they have wrong depth, even negative)
- they cannot be rejected without additional constraints or scene knowledge
- without local optimization the minimization is over a discrete set of epipolar geometries proposable from 7-tuples

Thank You

