
How To Find the Global Maxima (Modes) of a PDF?
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• averaged over 104 trials

• number of proposals before
|x− xtrue| ≤ step

• given the function p(x) at left p.d.f. on [0, 1], mode at 0.1

consider several methods:

1. exhaustive search

step = 1/(iterations-1);
for x = 0:step:1
if p(x) > bestp
bestx = x; bestp = p(x);

end
end

• slow algorithm
(definite quantization)

• fast to implement

2. randomized search with uniform sampling

while t < iterations
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);

end
t = t+1; % time

end

• equally slow algorithm

• fast to implement

3. random sampling from p(x) (Gibbs sampler)

• faster algorithm • fast to implement but often infeasible (e.g. when

p(x) is data dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling
• almost as fast (with care) • not so fast to implement

• rarely infeasible • RANSAC belongs here
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How To Generate Random Samples from a Complex Distribution?
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target (red) and scaled proposal (blue) distributions

• red: probability density function π(x) of the toy
distribution on the unit interval target distribution

π(x) =

4∑
i=1

γi Be(x;αi, βi),
4∑
i=1

γi = 1, γi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1

• alg. for generating samples from Be(x;α, β) is known

• ⇒ we can generate samples from π(x) how?

• suppose we cannot sample from π(x) but we can sample from some ‘simple’
distribution q(x | x0), given the last sample x0 (blue) proposal distribution

q(x | x0) =


U0,1(x) (independent) uniform sampling

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

π(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods from the previous slide

• how to redistribute proposal samples q(x | x0) to target distribution π(x) samples?

3D Computer Vision: V. Optimization for 3D Vision (p. 116/189) R. Šára, CMP; rev. 27–Nov–2018



IMetropolis-Hastings (MH) Sampling

C – configuration (of all variable values) eg. C = x and π(C) = π(x) from →116

Goal: Generate a sequence of random samples {Ct} from target distribution π(C)

• setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure
1. given Ct, draw a random sample S from q(S | Ct)

q may use some information from Ct (Hastings)

2. compute acceptance probability the evidence term drops out

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct

‘Programming’ an MH sampler

1. design a proposal distribution (mixture) q and a sampler from q

2. write functions q(Ct | S) and q(S | Ct) that are proper distributions not always simple

Finding the mode
• remember the best sample fast implementation but must wait long to hit the mode

• use simulated annealing very slow

• start local optimization from the best sample good trade-off between speed and accuracy

an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)
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MH Sampling Demo

sampling process (video, 7:33, 100k samples)

• blue point: current sample

• green circle: best sample so far quality = π(x)

• histogram: current distribution of visited states

• the vicinity of modes are the most often visited states

initial sample

final distribution
of visited states

3D Computer Vision: V. Optimization for 3D Vision (p. 118/189) R. Šára, CMP; rev. 27–Nov–2018
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Demo Source Code (Matlab)

function x = proposal_gen(x0)

% proposal generator q(x | x0)

T = 0.01; % temperature

x = betarnd(x0/T+1,(1-x0)/T+1);

end

function p = proposal_q(x, x0)

% proposal distribution q(x | x0)

T = 0.01;

p = betapdf(x, x0/T+1, (1-x0)/T+1);

end

function p = target_p(x)

% target distribution p(x)

% shape parameters:

a = [2 40 100 6];

b = [10 40 20 1];

% mixing coefficients:

w = [1 0.4 0.253 0.50]; w = w/sum(w);

p = 0;

for i = 1:length(a)

p = p + w(i)*betapdf(x,a(i),b(i));

end

end

%% DEMO script

k = 10000; % number of samples

X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);

for i = 1:k

x1 = proposal_gen(x0);

a = target_p(x1)/target_p(x0) * ...

proposal_q(x0,x1)/proposal_q(x1,x0);

if rand(1) < a

X(i) = x1; x0 = x1;

else

X(i) = x0;

end

end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, 0:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);

set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)

xlim([0 1]); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off
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IStripping MH Down

• when we are interested in the best sample only. . . and we need fast data exploration. . .

Simplified sampling procedure
1. given Ct, draw a random sample S from q(S | Ct) q(S) independent sampling

no use of information from Ct

2. compute acceptance probability

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct
5. if π(S) > π(Cbest) then remember Cbest := S

Steps 2–4 make no difference when waiting for the best sample

• . . . but getting a good accuracy sample might take very long this way

• good overall exploration but slow convergence in the vicinity of a mode where Ct could serve
as an attractor

• cannot use the past generated samples to estimate any parameters

• we will fix these problems by (possibly robust) ‘local optimization’
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IPutting Some Clothes Back: RANSAC [Fischler & Bolles 1981]

1. primitives = elementary measurements
• points in line fitting
• matches in epipolar geometry estimation

2. configuration = s-tuple of primitives minimal subsets necessary for parameter estimate

S

the minimization will be over a discrete set:

• of point pairs in line fitting (left)

• of match 7-tuples in epipolar geometry estimation

3. proposal distribution q(·) is then given by the empirical distribution of s-tuples:
a) propose s-tuple from data independently q(S | Ct) = q(S)

i) q uniform q(S) =
(mn
s

)−1
MAPSAC (p(S) includes the prior)

ii) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

b) solve the minimal geometric problem 7→ parameter proposal

• pairs of points define line distribution from p(n | X) (left)

• random correspondence tuples drawn uniformly propose
samples of F from a data-driven distribution q(F |M)

4. local optimization from promising proposals

5. stopping based on the probability of mode-hitting →123
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IRANSAC with Local Optimization and Early Stopping

1. initialize the best sample as empty Cbest := ∅ and time t := 0

2. estimate the number of needed proposals as N :=
(n
s

)
n – No. of primitives, s – minimal sample size

3. while t ≤ N :

a) propose a minimal random sample S of size s from q(S)
S

b) if π(S) > π(Cbest) then

i) update the best sample Cbest := S π(S) marginalized as in (26); π(S) includes a prior⇒ MAP

ii) threshold-out inliers using eT from (27)

2eT
S

iii) start local optimization from the inliers of Cbest LM optimization with robustified (→113) Sampson error

possibly weighted by posterior π(mij) [Chum et al. 2003]

LO(Cbest)

iv) update Cbest, update inliers using (27), re-estimate N from inlier counts →123 for derivation

N =
log(1− P )

log(1− εs)
, ε =

| inliers(Cbest)|
mn

,

c) t := t+ 1

4. output Cbest

• see MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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IStopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?
this will tell us nothing about the accuracy of the result

P . . . probability that at least one proposal is an all-inlier 1− P . . . all previous N proposals were bad

ε . . . the fraction of inliers among primitives, ε ≤ 1
s . . . minimal sample size (2 in line fitting, 7 in 7-point algorithm)

N ≥ log(1− P )

log(1− εs)

• εs . . . proposal does not contain an outlier

• 1− εs . . . proposal contains at least one outlier

• (1− εs)N . . .N previous proposals contained an outlier = 1− P

N for s = 7
P

ε 0.8 0.99

0.5 205 590
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• N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far

• this shows we have a good reason to limit all possible matches to tentative matches only

• for ε→ 0 we gain nothing over the standard MH-sampler stopping criterion
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Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

• notice some wrong matches (they have wrong depth, even negative)

• they cannot be rejected without additional constraints or scene knowledge

• without local optimization the minimization is over a discrete set of epipolar geometries
proposable from 7-tuples
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Thank You
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