► The Triangulation Problem

Problem: Given cameras P_1 , P_2 and a correspondence $x \leftrightarrow y$ compute a 3D point X projecting to x and y

$$\lambda_{1} \, \underline{\mathbf{x}} = \mathbf{P}_{1} \underline{\mathbf{X}}, \qquad \lambda_{2} \, \underline{\mathbf{y}} = \mathbf{P}_{2} \underline{\mathbf{X}}, \qquad \underline{\mathbf{x}} = \begin{bmatrix} u^{1} \\ v^{1} \\ 1 \end{bmatrix}, \qquad \underline{\mathbf{y}} = \begin{bmatrix} u^{2} \\ v^{2} \\ 1 \end{bmatrix}, \qquad \mathbf{P}_{i} = \begin{bmatrix} (\mathbf{p}_{1}^{i})^{\top} \\ (\mathbf{p}_{2}^{i})^{\top} \\ (\mathbf{p}_{3}^{i})^{\top} \end{bmatrix}$$

Linear triangulation method

$$u^{1} (\mathbf{p}_{3}^{1})^{\top} \mathbf{\underline{X}} = (\mathbf{p}_{1}^{1})^{\top} \mathbf{\underline{X}}, \qquad u^{2} (\mathbf{p}_{3}^{2})^{\top} \mathbf{\underline{X}} = (\mathbf{p}_{1}^{2})^{\top} \mathbf{\underline{X}}, \\ v^{1} (\mathbf{p}_{3}^{1})^{\top} \mathbf{\underline{X}} = (\mathbf{p}_{2}^{1})^{\top} \mathbf{\underline{X}}, \qquad v^{2} (\mathbf{p}_{3}^{2})^{\top} \mathbf{\underline{X}} = (\mathbf{p}_{2}^{2})^{\top} \mathbf{\underline{X}},$$

Gives

$$\mathbf{D}\underline{\mathbf{X}} = \mathbf{0}, \qquad \mathbf{D} = \begin{bmatrix} u^{1} (\mathbf{p}_{3}^{1})^{\top} - (\mathbf{p}_{1}^{1})^{\top} \\ v^{1} (\mathbf{p}_{3}^{1})^{\top} - (\mathbf{p}_{2}^{1})^{\top} \\ u^{2} (\mathbf{p}_{3}^{2})^{\top} - (\mathbf{p}_{1}^{2})^{\top} \\ v^{2} (\mathbf{p}_{3}^{2})^{\top} - (\mathbf{p}_{2}^{2})^{\top} \end{bmatrix}, \qquad \mathbf{D} \in \mathbb{R}^{4,4}, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}$$
(14)

- back-projected rays will generally not intersect due to image error, see next
- using Jack-knife (\rightarrow 63) not recommended
- we will use SVD (\rightarrow 89)
- but the result will not be invariant to projective frame

replacing $P_1 \mapsto P_1 H$, $P_2 \mapsto P_2 H$ does not always result in $\underline{X} \mapsto H^{-1} \underline{X}$

• note the homogeneous form in (14) can represent points at infinity

3D Computer Vision: IV. Computing with a Camera Pair (p. 88/189) 290 R. Šára, CMP; rev. 13-Nov-2018 🗺

sensitive to small error

► The Least-Squares Triangulation by SVD

- if ${\bf D}$ is full-rank we may minimize the algebraic least-squares error

$$\boldsymbol{\varepsilon}^2(\underline{\mathbf{X}}) = \|\mathbf{D}\underline{\mathbf{X}}\|^2 \quad \text{s.t.} \quad \|\underline{\mathbf{X}}\| = 1, \qquad \underline{\mathbf{X}} \in \mathbb{R}^4$$

• let \mathbf{D}_i be the *i*-th row of \mathbf{D} , then

$$\|\mathbf{D}\underline{\mathbf{X}}\|^{2} = \sum_{i=1}^{4} (\mathbf{D}_{i} \underline{\mathbf{X}})^{2} = \sum_{i=1}^{4} \underline{\mathbf{X}}^{\top} \mathbf{D}_{i}^{\top} \mathbf{D}_{i} \underline{\mathbf{X}} = \underline{\mathbf{X}}^{\top} \mathbf{Q} \underline{\mathbf{X}}, \text{ where } \mathbf{Q} = \sum_{i=1}^{4} \mathbf{D}_{i}^{\top} \mathbf{D}_{i} = \mathbf{D}^{\top} \mathbf{D} \in \mathbb{R}^{4,4}$$
• we write the SVD of \mathbf{Q} as $\mathbf{Q} = \sum_{j=1}^{4} \sigma_{j}^{2} \mathbf{u}_{j} \mathbf{u}_{j}^{\top}$, in which [Golub & van Loan 2013, Sec. 2.5]
 $\sigma_{1}^{2} \ge \cdots \ge \sigma_{4}^{2} \ge 0$ and $\mathbf{u}_{l}^{\top} \mathbf{u}_{m} = \begin{cases} 0 & \text{if } l \neq m \\ 1 & \text{otherwise} \end{cases}$
• then $\underline{\mathbf{X}} = \arg\min_{\mathbf{q}, \|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q} = \mathbf{u}_{4}$

Proof (by contradiction).

Let
$$ar{\mathbf{q}} = \sum_{i=1}^{n} a_i \mathbf{u}_i$$
 s.t. $\sum_{i=1}^{n} a_i^2 = 1$, then $\|ar{\mathbf{q}}\| = 1$, and

$$\bar{\mathbf{q}}^{\top}\mathbf{Q}\,\bar{\mathbf{q}} = \sum_{j=1}^{4}\sigma_{j}^{2}\,\bar{\mathbf{q}}^{\top}\mathbf{u}_{j}\,\mathbf{u}_{j}^{\top}\,\bar{\mathbf{q}} = \sum_{j=1}^{4}\sigma_{j}^{2}\,(\mathbf{u}_{j}^{\top}\,\bar{\mathbf{q}})^{2} = \dots = \sum_{j=1}^{4}a_{j}^{2}\sigma_{j}^{2} \geq \sum_{j=1}^{4}a_{j}^{2}\sigma_{4}^{2} = \sigma_{4}^{2}$$

3D Computer Vision: IV. Computing with a Camera Pair (p. 89/189) のへや R. Šára, CMP; rev. 13-Nov-2018 🗺

▶cont'd

 if σ₄ ≪ σ₃, there is a unique solution <u>X</u> = u₄ with residual error (D <u>X</u>)² = σ₄² the quality (conditioning) of the solution may be expressed as q = σ₃/σ₄ (greater is better)

Matlab code for the least-squares solver:

```
[U,0,V] = svd(D);
X = V(:,end);
q = 0(3,3)/0(4,4);
```

 \circledast P1; 1pt: Why did we decompose **D** and not **Q** = **D**^T**D**?

► Numerical Conditioning

• The equation $D\underline{X} = 0$ in (14) may be ill-conditioned for numerical computation, which results in a poor estimate for \underline{X} .

Why: on a row of D there are big entries together with small entries, e.g. of orders projection centers in mm, image points in px

$[10^{3}]$	0	10^{3}	10^{6}
0	10^{3}	10^{3}	10^{6}
10^{3}	0	10^{3}	10^{6}
0	10^{3}	10^{3}	10^{6}

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$\mathbf{0} = \mathbf{D}\,\underline{\mathbf{X}} = \mathbf{D}\,\mathbf{S}\,\mathbf{S}^{-1}\underline{\mathbf{X}} = \bar{\mathbf{D}}\,\underline{\bar{\mathbf{X}}}$$

choose ${\bf S}$ to make the entries in $\hat{{\bf D}}$ all smaller than unity in absolute value:

 $\mathbf{S} = \text{diag}(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}) \qquad \qquad \mathbf{S} = \text{diag}(1./\text{max}(abs(D), 1))$

- 2. solve for $\overline{\mathbf{X}}$ as before
- 3. get the final solution as $\underline{\mathbf{X}} = \mathbf{S} \, \underline{\bar{\mathbf{X}}}$
- · when SVD is used in camera resection, conditioning is essential for success

→62

Algebraic Error vs Reprojection Error

- algebraic error $(c \text{camera index}, (u^c, v^c) \text{image coordinates})$ from SVD \rightarrow 90 $\varepsilon^2(\underline{\mathbf{X}}) = \sigma_4^2 = \sum_{c=1}^2 \left[\left(u^c(\mathbf{p}_3^c)^\top \underline{\mathbf{X}} - (\mathbf{p}_1^c)^\top \underline{\mathbf{X}} \right)^2 + \left(v^c(\mathbf{p}_3^c)^\top \underline{\mathbf{X}} - (\mathbf{p}_2^c)^\top \underline{\mathbf{X}} \right)^2 \right]$
- reprojection error

$$e^{2}(\underline{\mathbf{X}}) = \sum_{c=1}^{2} \left[\left(u^{c} - \frac{(\mathbf{p}_{1}^{c})^{\top} \underline{\mathbf{X}}}{(\mathbf{p}_{3}^{c})^{\top} \underline{\mathbf{X}}} \right)^{2} + \left(v^{c} - \frac{(\mathbf{p}_{2}^{c})^{\top} \underline{\mathbf{X}}}{(\mathbf{p}_{3}^{c})^{\top} \underline{\mathbf{X}}} \right)^{2} \right]$$

algebraic error zero ⇔ reprojection error zero

 $\sigma_4 = 0 \Rightarrow$ non-trivial null space

- epipolar constraint satisfied \Rightarrow equivalent results
- in general: minimizing algebraic error is cheap but it gives inferior results
- minimizing reprojection error is expensive but it gives good results
- the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
- the golden standard method deferred to ightarrow 104

3D Computer Vision: IV. Computing with a Camera Pair (p. 92/189) のへへ R. Šára, CMP; rev. 13-Nov-2018 🗓

► We Have Added to The ZOO

continuation from ${\rightarrow}68$

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^6$	Р	62
exterior orientation	\mathbf{K} , 3 world–img correspondences $\left\{ \left(X_{i},m_{i} ight) ight\} _{i=1}^{3}$	R, t	66
relative orientation	3 world-world correspondences $\left\{ \left(X_{i},Y_{i} ight) ight\} _{i=1}^{3}$	R, t	69
fundamental matrix	7 img-img correspondences $\left\{(m_i,m_i') ight\}_{i=1}^7$	F	83
relative orientation	\mathbf{K} , 5 img-img correspondences $\left\{ \left(m_{i},m_{i}^{\prime} ight) ight\} _{i=1}^{5}$	R, t	87
triangulation	\mathbf{P}_1 , \mathbf{P}_2 , 1 img-img correspondence (m_i, m_i')	X	88

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators \rightarrow 117)
- algebraic error optimization (SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

3D Computer Vision: IV. Computing with a Camera Pair (p. 93/189) \mathfrak{PQQ} R. Šára, CMP; rev. 13-Nov-2018 🚰

Module V

Optimization for 3D Vision

The Concept of Error for Epipolar Geometry
 Levenberg-Marquardt's Iterative Optimization
 The Correspondence Problem
 Optimization by Random Sampling

covered by

- [1] [H&Z] Secs: 11.4, 11.6, 4.7
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. *Communications of the ACM* 24(6):381–395, 1981

additional references

- P. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. *Computer Vision, Graphics, and Image Processing*, 18:97–108, 1982.
- O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In *Proc DAGM*, LNCS 2781:236–243. Springer-Verlag, 2003.
- O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In *Proc ICPR*, vol 1:112–115, 2004.

► The Concept of Error for Epipolar Geometry

Problem: Given at least 8 matched points $x_i \leftrightarrow y_j$ in a general position, estimate the most likely (or most probable) fundamental matrix **F**.

- detected points (measurements) x_i , y_i
- we introduce matches $\mathbf{Z}_i = (u_i^1, v_i^1, u_i^2, v_i^2) \in \mathbb{R}^4$; $S = \{\mathbf{Z}_i\}_{i=1}^k$
- corrected points \hat{x}_i , \hat{y}_i ; $\hat{\mathbf{Z}}_i = (\hat{u}_i^1, \hat{v}_i^1, \hat{u}_i^2, \hat{v}_i^2)$; $\hat{S} = \left\{ \hat{\mathbf{Z}}_i \right\}_{i=1}^k$ are correspondences
- correspondences satisfy the epipolar geometry exactly $\hat{\mathbf{y}}_i^{\top} \mathbf{F} \hat{\mathbf{x}}_i = 0$, $i = 1, \dots, k$
- small correction is more probable
- let $\mathbf{e}_i(\cdot)$ be the <u>'reprojection error'</u> (vector) per match i,

$$\mathbf{e}_{i}(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}) = \begin{bmatrix} \mathbf{x}_{i} - \hat{\mathbf{x}}_{i} \\ \mathbf{y}_{i} - \hat{\mathbf{y}}_{i} \end{bmatrix} = \mathbf{e}_{i}(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}) = \mathbf{Z}_{i} - \hat{\mathbf{Z}}_{i}(\mathbf{F})$$

$$\|\mathbf{e}_{i}(\cdot)\|^{2} \stackrel{\text{def}}{=} \mathbf{e}_{i}^{2}(\cdot) = \|\mathbf{x}_{i} - \hat{\mathbf{x}}_{i}\|^{2} + \|\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}\|^{2} = \|\mathbf{Z}_{i} - \hat{\mathbf{Z}}_{i}(\mathbf{F})\|^{2}$$
(15)

3D Computer Vision: V. Optimization for 3D Vision (p. 95/189) つくへ R

▶cont'd

• the total reprojection error (of all data) then is

$$L(S \mid \hat{S}, \mathbf{F}) = \sum_{i=1}^{k} \mathbf{e}_i^2(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F}) = \sum_{i=1}^{k} \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i, \mathbf{F})$$

and the optimization problem is

$$\hat{S}^*, \mathbf{F}^*) = \arg\min_{\substack{\mathbf{F} \\ \mathrm{rank}\,\mathbf{F} = 2}} \min_{\substack{\hat{\mathbf{y}}_i^\top \mathbf{F} \, \hat{\mathbf{x}}_i = 0}} \sum_{i=1}^k \, \mathbf{e}_i^2(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F})$$
(16)

Three possible approaches

- they differ in how the correspondences \hat{x}_i , \hat{y}_i are obtained:
 - 1. direct optimization of reprojection error over all variables \hat{S} , F ightarrow 97
 - 2. Sampson optimal correction = partial correction of \mathbf{Z}_i towards $\hat{\mathbf{Z}}_i$ used in an iterative minimization over \mathbf{F} \rightarrow 98
 - 3. removing \hat{x}_i , \hat{y}_i altogether = marginalization of $L(S, \hat{S} | \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F} not covered, the marginalization is difficult

Method 1: Geometric Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_i \mathbf{F} \, \hat{\mathbf{x}}_i = 0$, rank $\mathbf{F} = 2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

$$\mathbf{P}_1 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} [\mathbf{e}_2]_{\times} \mathbf{F} + \mathbf{e}_2 \mathbf{e}_1^{\top} & \mathbf{e}_2 \end{bmatrix}$$
(17)

 \circledast H3; 2pt: Assuming e_1 , e_2 are epipoles of F, verify that F is a fundamental matrix of P_1 , P_2 . Hint: A is skew symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$ for all vectors \mathbf{x} .

- 1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm $\rightarrow 83$; construct camera $\mathbf{P}_2^{(0)}$ from $\mathbf{F}^{(0)}$ using (17)
- 2. triangulate 3D points $\hat{\mathbf{X}}_{i}^{(0)}$ from matches (x_{i}, y_{i}) for all $i = 1, \dots, k$ $\rightarrow 88$
- 3. starting from $\mathbf{P}_{2}^{(0)}$, $\hat{\mathbf{X}}^{(0)}$ minimize the reprojection error (15)

$$(\hat{\mathbf{X}}^*, \mathbf{P}_2^*) = \arg \min_{\mathbf{P}_2, \hat{\mathbf{X}}} \sum_{i=1}^{\kappa} \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i(\hat{\mathbf{X}}_i, \mathbf{P}_2))$$

where

$$\hat{\mathbf{Z}}_i = (\hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i)$$
 (Cartesian), $\hat{\mathbf{x}}_i \simeq \mathbf{P}_1 \underline{\hat{\mathbf{X}}}_i$, $\hat{\mathbf{y}}_i \simeq \mathbf{P}_2 \underline{\hat{\mathbf{X}}}_i$ (homogeneous)

Non-linear, non-convex problem

- 4. compute **F** from P_1 , P_2^*
- 3k + 12 parameters to be found: latent: $\mathbf{\hat{X}}_i$, for all *i* (correspondences!), non-latent: \mathbf{P}_2
- minimal representation: 3k + 7 parameters, $\mathbf{P}_2 = \mathbf{P}_2(\mathbf{F})$
- there are pitfalls; this is essentially bundle adjustment; we will return to this later

3D Computer Vision; V. Optimization for 3D Vision (p. 97/189) DaG

R. Šára, CMP: rev. 13-Nov-2018

 \rightarrow 143

 \rightarrow 134

► Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

- we will get rid of the latent parameters \hat{X} needed for obtaining the correction
 - [H&Z, p. 287], [Sampson 1982]

- we will recycle the algebraic error $\boldsymbol{\varepsilon} = \underline{\mathbf{y}}^{\top} \mathbf{F} \, \underline{\mathbf{x}}$ from $\rightarrow 83$
- consider matches \mathbf{Z}_i , correspondences $\hat{\mathbf{Z}}_i$, and reprojection error $\mathbf{e}_i = \|\mathbf{Z}_i \hat{\mathbf{Z}}_i\|^2$
- correspondences satisfy $\hat{\mathbf{y}}_i^{\top} \mathbf{F} \, \hat{\mathbf{x}}_i = 0$, $\hat{\mathbf{x}}_i = (\hat{u}^1, \hat{v}^1, 1), \ \hat{\mathbf{y}}_i = (\hat{u}^2, \hat{v}^2, 1)$
- this is a manifold $\mathcal{V}_F \in \mathbb{R}^4$: a set of points $\mathbf{\hat{Z}} = (\hat{u}^1, \, \hat{v}^1, \, \hat{u}^2, \, \hat{v}^2)$ consistent with \mathbf{F}
- algebraic error vanishes for $\hat{\mathbf{Z}}_i$: $\mathbf{0} = \boldsymbol{\varepsilon}_i(\hat{\mathbf{Z}}_i) = \hat{\underline{\mathbf{y}}}_i^\top \mathbf{F} \hat{\underline{\mathbf{x}}}_i$

Sampson's idea: Linearize the algebraic error $\varepsilon(\mathbf{Z})$ at \mathbf{Z}_i (where it is non-zero) and evaluate the resulting linear function at $\hat{\mathbf{Z}}_i$ (where it is zero). The zero-crossing replaces \mathcal{V}_F by a linear manifold \mathcal{L} . The point on \mathcal{V}_F closest to \mathbf{Z}_i is replaced by the closest point on \mathcal{L} .

$$oldsymbol{arepsilon}_i(\mathbf{\hat{Z}}_i) \ pprox \ oldsymbol{arepsilon}_i(\mathbf{Z}_i) + rac{\partial oldsymbol{arepsilon}_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i} \, (\mathbf{\hat{Z}}_i - \mathbf{Z}_i)$$

Sampson's Approximation of Reprojection Error

• linearize $m{arepsilon}(\mathbf{Z})$ at match \mathbf{Z}_i , evaluate it at correspondence $\hat{\mathbf{Z}}_i$

$$0 = \varepsilon_i(\hat{\mathbf{Z}}_i) \approx \varepsilon_i(\mathbf{Z}_i) + \underbrace{\frac{\partial \varepsilon_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i}}_{\mathbf{J}_i(\mathbf{Z}_i)} \underbrace{(\hat{\mathbf{Z}}_i - \mathbf{Z}_i)}_{\mathbf{e}_i(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)} \stackrel{\text{def}}{=} \varepsilon_i(\mathbf{Z}_i) + \mathbf{J}_i(\mathbf{Z}_i) \mathbf{e}_i(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)$$

- goal: compute <u>function</u> $\mathbf{e}_i(\cdot)$ from $\boldsymbol{\varepsilon}_i(\cdot)$, where $\mathbf{e}_i(\cdot)$ is the distance of $\mathbf{\hat{Z}}_i$ from \mathbf{Z}_i
- we have a linear underconstrained equation for $\mathbf{e}_i(\cdot)$
- we look for a minimal $\mathbf{e}_i(\cdot)$ per match i

$$\mathbf{e}_i(\cdot)^* = \arg\min_{\mathbf{e}_i(\cdot)} \|\mathbf{e}_i(\cdot)\|^2 \quad \text{subject to} \quad \boldsymbol{\varepsilon}_i(\cdot) + \mathbf{J}_i(\cdot) \, \mathbf{e}_i(\cdot) = 0$$

• which has a closed-form solution note that $J_i(\cdot)$ is not invertible! $\circledast P1$; 1pt: derive $e_i^*(\cdot)$

$$\mathbf{e}_{i}^{*}(\cdot) = -\mathbf{J}_{i}^{\top}(\mathbf{J}_{i}\mathbf{J}_{i}^{\top})^{-1}\boldsymbol{\varepsilon}_{i}(\cdot)$$

$$|\mathbf{e}_{i}^{*}(\cdot)||^{2} = \boldsymbol{\varepsilon}_{i}^{\top}(\cdot)(\mathbf{J}_{i}\mathbf{J}_{i}^{\top})^{-1}\boldsymbol{\varepsilon}_{i}(\cdot)$$
(18)

- this maps $oldsymbol{arepsilon}_i(\cdot)$ to an estimate of $\mathbf{e}_i(\cdot)$ per correspondence
- we often do not need \mathbf{e}_i , just $\|\mathbf{e}_i\|^2$ exception: triangulation ightarrow 104
- the unknown parameters ${f F}$ are inside: ${f e}_i={f e}_i({f F})$, ${m arepsilon}_i={m arepsilon}_i({f F})$, ${f J}_i={f J}_i({f F})$

Example: Fitting A Circle To Scattered Points

Problem: Fit a zero-centered circle C to a set of 2D points $\{x_i\}_{i=1}^k$, C: $\|\mathbf{x}\|^2 - r^2 = 0$.

1. consider radial error as the 'algebraic error' $\mathbf{arepsilon}(\mathbf{x}) = \|\mathbf{x}\|^2 - r^2$

note th

2. linearize it at $\hat{\mathbf{x}}$

we are dropping i in ε_i , \mathbf{e}_i etc for clarity

$$\boldsymbol{\varepsilon}(\mathbf{\hat{x}}) \approx \boldsymbol{\varepsilon}(\mathbf{x}) + \underbrace{\frac{\partial \boldsymbol{\varepsilon}(\mathbf{x})}{\partial \mathbf{x}}}_{\mathbf{J}(\mathbf{x})=2\mathbf{x}^{\top}} \underbrace{(\mathbf{\hat{x}}-\mathbf{x})}_{\mathbf{e}(\mathbf{\hat{x}},\mathbf{x})} = \cdots = 2 \mathbf{x}^{\top} \mathbf{\hat{x}} - (r^2 + \|\mathbf{x}\|^2) \stackrel{\text{def}}{=} \boldsymbol{\varepsilon}_L(\mathbf{\hat{x}})$$

 $\varepsilon_L(\hat{\mathbf{x}}) = 0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^2 + \|\mathbf{x}\|^2}{2\|\mathbf{x}\|}$ not tangent to C, outside! 3. using (18), express error approximation \mathbf{e}^* as

$$\|\mathbf{e}^*\|^2 = \boldsymbol{\varepsilon}^\top (\mathbf{J}\mathbf{J}^\top)^{-1} \boldsymbol{\varepsilon} = \frac{(\|\mathbf{x}\|^2 - \boldsymbol{r}^2)^2}{4\|\mathbf{x}\|^2}$$

4. fit circle

$$r^* = \arg\min_{r} \sum_{i=1}^{k} \frac{(\|\mathbf{x}_i\|^2 - r^2)^2}{4\|\mathbf{x}_i\|^2} = \dots = \left(\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\|\mathbf{x}_i\|^2}\right)^{-\frac{1}{2}}$$

• this example results in a convex quadratic optimization problem

at

$$\arg\min_{r} \sum_{i=1}^{k} (\|\mathbf{x}_{i}\|^{2} - r^{2})^{2} = \left(\frac{1}{k} \sum_{i=1}^{k} \|\mathbf{x}_{i}\|^{2}\right)^{\frac{1}{2}}$$

3D Computer Vision: V. Optimization for 3D Vision (p. 100/189) つんぐ R. Šára, CMP; rev. 13-Nov-2018 🗓

Circle Fitting: Some Results

black - optimal estimator for isotropic error

which method is better?

- error should model noise, radial noise and isotropic noise behave differently
- ground truth: Normally distributed isotropic error, Gamma-distributed radial error
- Sampson: better for the radial distribution model; Direct: better for the isotropic model
- no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator K Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

3D Computer Vision: V. Optimization for 3D Vision (p. 101/189) つへへ R. Šára, CMP; rev. 13-Nov-2018 📴

Discussion: On The Art of Probabilistic Model Design...

a few models for fitting zero-centered circle C of radius r to points in \mathbb{R}^2 ٠ marginalized over C

orthogonal deviation from C

Sampson approximation

3D Computer Vision: V. Optimization for 3D Vision (p. 102/189) のへや

R. Šára, CMP: rev. 13-Nov-2018

Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is

$$\varepsilon_i(\mathbf{F}) = \mathbf{y}_i^{\top} \mathbf{F} \mathbf{x}_i, \quad \mathbf{x}_i = (u_i^1, v_i^1), \quad \mathbf{y}_i = (u_i^2, v_i^2), \qquad \varepsilon_i \in \mathbb{R}$$

 $\Gamma(\mathbf{D}^1) \top \mathbf{T}$

Let
$$\mathbf{F} = \begin{bmatrix} \mathbf{F}_1 & \mathbf{F}_2 & \mathbf{F}_3 \end{bmatrix}$$
 (per columns) $= \begin{bmatrix} (\mathbf{F}^2)^\top \\ (\mathbf{F}^2)^\top \\ (\mathbf{F}^3)^\top \end{bmatrix}$ (per rows), $\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then

Sampson

$$\begin{split} \mathbf{J}_{i}(\mathbf{F}) &= \begin{bmatrix} \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{2}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{2}} \end{bmatrix} \qquad \mathbf{J}_{i} \in \mathbb{R}^{1,4} \quad \text{derivatives over point coords} \\ &= \begin{bmatrix} (\mathbf{F}_{1})^{\top} \underline{\mathbf{y}}_{i}, \ (\mathbf{F}_{2})^{\top} \underline{\mathbf{y}}_{i}, \ (\mathbf{F}^{1})^{\top} \underline{\mathbf{x}}_{i}, \ (\mathbf{F}^{2})^{\top} \underline{\mathbf{x}}_{i} \end{bmatrix} \\ &\mathbf{e}_{i}(\mathbf{F}) &= -\frac{\mathbf{J}_{i}(\mathbf{F}) \varepsilon_{i}(\mathbf{F})}{\|\mathbf{J}_{i}(\mathbf{F})\|^{2}} \qquad \mathbf{e}_{i}(\mathbf{F}) \in \mathbb{R}^{4} \quad \text{Sampson error vector} \end{split}$$

$$e_i(\mathbf{F}) = \|\mathbf{e}_i(\mathbf{F})\| = \frac{\varepsilon_i(\mathbf{F})}{\|\mathbf{J}_i(\mathbf{F})\|} = \frac{\underline{\mathbf{y}}_i^\top \mathbf{F} \underline{\mathbf{x}}_i}{\sqrt{\|\mathbf{SF} \underline{\mathbf{x}}_i\|^2 + \|\mathbf{SF}^\top \underline{\mathbf{y}}_i\|^2}} \quad e_i(\mathbf{F}) \in \mathbb{R} \quad \text{ scalar Sampson error}$$

- Sampson error 'normalizes' the algebraic error
- automatically copes with multiplicative factors $\mathbf{F}\mapsto\lambda\mathbf{F}$
- actual optimization not yet covered ${\rightarrow}108$

Γı

0 07

Thank You

