
CONVEX HULLS

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 8.11.2012

Felkel: Computational geometry

(2)

Talk overview

 Motivation and Definitions
 Graham’s scan – incremental algorithm
 Divide & Conquer
 Quick hull
 Jarvis’s March – selection by gift wrapping
 Chan’s algorithm – optimal algorithm

www.cguu.com

Felkel: Computational geometry

(3)

Convex hull (CH) – why to deal with it?

 Shape approximation of a point set or complex shapes
(other common approximations include: minimal area enclosing
rectangle, circle, and ellipse,…) – e.g., for collision detection

 Initial stage of many algorithms to filter out irrelevant
points, e.g.:

– diameter of a point set
– minimum enclosing convex shapes (such as rectangle, circle,

and ellipse) depend only on points on CH

Felkel: Computational geometry

(4)

not convex

!!!

Convexity

 A set S is convex
– if for any points p,q œ S the lines segment pq Œ S, or
– if any convex combination of p and q is in S

 Convex combination of points p, q is any point that
can be expressed as
(1 – a) p + aq, where 0 § a § 1

 Convex hull CH(S) of set S – is (similar definitions)
– the smallest set that contains S
– or: intersection of all convex sets that contain S
– Or in 2D for points: the smallest convex polygon

containing all given points

p
q

a=0
a=1

convex

Line test

Felkel: Computational geometry

(5)

 Metric space – each two of points have defined a distance
 r-neighborhood of a point p and radius r > 0

= set of points whose distance to p is strictly less than r
(open ball of diameter r centered about p)

 Given set S, point p is
– Interior point of S – if (r-neighborhood about p of radius r) Õ S
– Exterior point – if it lies in interior of the complement of S
– Border point – is neither interior neither exterior

Definitions from topology in metric spaces

p

p

r

p

Interior point

Exterior point

Border point

r

S

Felkel: Computational geometry

(6)

Definitions from topology in metric spaces
 Set S is Open (otevřená)

– "p œ S $ (r-neighborhood about p of radius r) Œ S
– it contains only interior points, none of its border points

 Closed (uzavřená)

– If it is equal to its closure S (uzávěr = smallest closed set containing S in topol. space)

"(r-neighborhood about p of radius r) … S ∫ «)

 Clopen (otevřená i uzavřená) – Ex. Empty set «, finite set of disjoint components

– if it is both closed and open space Q = rational numbers
(S= all positive rational numbers whose square is bigger than 2) S = (◊2, ¶) in Q, ◊2 – Q, S = S

 Bounded (ohraničená) Unbounded

– if it can be enclosed in a ball of finite radius
 Compact (kompaktní)

– if it is both closed and bounded

Felkel: Computational geometry

(7)

Definitions from topology in metric spaces

 Convex set S may be bounded or unbounded

 Convex hull CH(S) of a finite set S of points in the
plane

= Bounded, closed, (= compact) convex polygon

point
segment
polygon

[Mount]

Open

Bounded
Bounded
Closed

Felkel: Computational geometry

(8)

Convex hull representation

 CCW enumeration of vertices
 Contains only the extreme points

(“endpoints” of collinear points)

 Simplification for this semester
Assume the input points are in general position,

– no two points have the same x-coordinates and
– no three points are collinear

-> We avoid problem with non-extreme points on x
(solution may be simple – e.g. lexicographic ordering)

Felkel: Computational geometry

(9)

Online x offline algorithms

 Incremental algorithm
– Proceeds one element at a time (step-by-step)

 Online algorithm (must be incremental)

– is started on a partial (or empty) input and
– continues its processing as additional input data

becomes available (comes online, thus the name).
– Ex.: insertion sort

 Offline algorithm (may be incremental)

– requires the entire input data from the beginning
– than it can start
– Ex.: selection sort

Felkel: Computational geometry

(10)

Graham’s scan

 Incremental O(n log n) algorithm
 Objects (points) are added one at a time
 Order of insertion is important

– Random insertion
–> we need to test: is-point-inside-the-hull(p)

– Ordered insertion
Sort points according to x and add them left to right - it
guarantees, that just added point is outside current hull

• Original algorithm sorted the angles around the point with minimal y
• Sorting x-coordinates is simpler to implement than sorting of angles

Felkel: Computational geometry

(11)

Graham’s scan

 O(n log n) for unsorted points, O(n) for sorted pts.
 Upper hull, then lower hull. Merge.
 Minimum and maximum on x belong to CH

p1

pn

lower hull

upper hull

Input:
Output:

Felkel: Computational geometry

(12)

Graham’s scan – incremental algorithm
GrahamsScan(points p)

points p
CCW points on the convex hull

1. sort points according to increasing x-coord -> {p1, p2, …, pn}
2. push(p1, H), push(p2, H)
3. for i = 3 to n do
4. while(size(H) ¥ 2 and orient(sos, tos, pi) ¥ 0) // skip left turns
5. pop H // (back-tracking)
6. push(pi, H) // store right turn
7. store H to the output (in reverse order) // upper hull
8. Symmetrically the lower hull

tos pisos pi pitossos tossos

pop

upper hull

pop H pop H

tos
sos

Stack H

push pop

Felkel: Computational geometry

(13)

Position of point in relation to segment

> 0 r is left from pq, CCW orient
orient(p, q, r) = 0 if (p, q, r) are collinear

< 0 r is right from pq, CW orient

q

p
q

r
p

q

r

left from pqPoint r is: on segment pq right from pq

is CCW orientedTriangle pqr: degenerated
to line

is CW oriented

p
q

r

p
qr p

r

Convex polygon with edges pq and qr or

Felkel: Computational geometry

(14)

Geometric meaning: Area of Triangle ABC
 Position of point C in relation to segment AB is given by

the sign of the triangle ABC area

 T = ½ |AB x AC|
 a = B - A
 b = C – A
 T = ½ (ax by - ay bx)

A B

C

a

b

Ax Ay 1
Bx By 1
Cx Cy 1

2T = = Ax By + BxCy + Cx Ay - Ax Cy - BxAy - Cx By

=> 2T = Ax By + BxCy + Cx Ay - Ax Cy - BxAy - Cx By

2x Oriented area

Can be computed as
vector product

Or directly as determinant

Felkel: Computational geometry

(15)

Geometric meaning: Area of Triangle ABC

= Vector perpendicular to both vectors AB and AC
 If vectors in plane

– it is perpendicular to the plane (normal vector of the plane)
– only z-coordinate is non-zero

 |AB x AC| = z-coordinate of the normal vector
= area of parallelopid
= 2x area T of triangle ABC

A B

C

A B

C

A B

C

Equal to size of Vector product of vectors AB x AC

Felkel: Computational geometry

(16)

Is Graham’s scan correct?
 Stack H at any stage contains upper hull of the points

{p1,…,pj, pi}, processed so far
– For induction basis H={p1, p2} … true
– pi = last added point to CH, pj = its predecessor on CH
– Each point pk that lies between pj and pi lies below pjpi and should

not be part of UH after addition of pi => is removed before push pi.
[orient(pj, pk, pi) > 0, pi is left from pjpk => pk is removed from UH]

– Stop if 2 points in the stack or after construction of the upper hull

[Mount]

Points on stack H
= CH ({p1, p2, … ,pi-1,})

pk

Felkel: Computational geometry

(17)

Complexity of Graham’s scan

 Sorting according x – O(n log n)
 Each point pushed once – O(n)
 Some (di § n) points deleted while processing pi

– O(n)
 The same for lower hull – O(n)

 Total O(n log n) for unsorted points
O(n) for sorted points

Felkel: Computational geometry

(18)

Divide & Conquer

 Q(n log(n)) algorithm
 Extension of mergesort
 Principle

– Sort points according to x-coordinate,
– recursively partition the points and solve CH.

Input:
Output:

Felkel: Computational geometry

(19)

ConvexHullD&C(points P)
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)
4. if |P| § 3 then
5. compute CH by brute force,
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent(HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent(HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C
Upper tangent

Lower tangent

Input:
Output:

Felkel: Computational geometry

(20)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) ¥ 0
which means a.succ is left from line ab

Upper tangent

Lower tangent

m = |HL|+ |HR| § |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

Felkel: Computational geometry

(21)

Convex hull by D&C complexity

 Initial sort O(n log(n))
 Function hull()

– Upper and lower tangent O(n)
– Merge hulls O(1)
– Discard points between tangents O(n)

 Overall complexity
– Recursion

– Overall complexity of CH by D&C: => O(n log(n))

T(n) = 1 … if n § 3
2T(n/2) + O(n) … otherwise

Felkel: Computational geometry

(22)

Quick hull

 A variant of Quick Sort
 O(n log n) expected time, max O(n2)
 Principle

– in praxis, most of the points lie in the interior of CH
– E.g., for uniformly distributed points in unit square, we

expect only O(log n) points on CH

 Find extreme points (parts of CH)
quadrilateral, discard inner points

– Add 4 edges to temp hull T
– Process points outside 4 edges

[Mount]

Felkel: Computational geometry

(23)

Process each of four groups of points outside

 For points outside ab (left from ab)
– Find point c on the hull – max. perpend. distance to ab
– Discard points inside triangle abc (right from the edges)
– Split points into two subsets

- outside ac (left from ac) and outside cb (left from cb)
– Process points outside ac and cb recursively
– Replace edge ab in T by edges ac and cb

[Mount]

Felkel: Computational geometry

(24)

Quick hull complexity

 n points remain outside the hull
 T(n) = running time for such n points outside

– O(n) - selection of splitting point c
– O(n) - point classification to inside & (n1+n2) outside
– n1+n2 § n
– The running time is given by recurrence

1 if n = 1
T(n1) + T(n2) where n1+n2 § n

– If evenly distributed that max(n1, n2) § an, 0 § a § 1
then solves as QuickSort to O(cn log n) where c=f(a)
else O(n2) for unbalanced splits

T(n) =

Felkel: Computational geometry

(25)

Jarvis’s March – selection by gift wrapping

 Variant of O(n2) selection sort
 Output sensitive algorithm
 O(nh) … h = number of points on convex hull

Input:
Output:

Felkel: Computational geometry

(26)

Jarvis’s March
JarvisCH(points P)

points p
CCW points on the convex hull

1. Take point p1 with minimum y-coordinate,
// p1 will be the first point in the hull

2. Take a horizontal line, i.e., create temporary point p0 = (–¶, p1.y)
3. i = 1
4. repeat
5. Rotate the line around pi until bounces to the nearest point q

// compute the smallest angle by the smallest orient(pi-1 , pi , q)
6. i++

pi = the bounced nearest point q
7. until (q ≠ p1)

Complexity: O(n) + O(n) * h => O(h*n)
good for low number of points on convex hull

p1 p2

ph
p0

Output sensitive algorithm

Felkel: Computational geometry

(27)

Output sensitive algorithm

 Worst case complexity analysis analyzes the worst
case data

– Presumes, that all (const fraction of) points lie on the CH
– The points are ordered along CH

=> We need sorting => W(n log n) of CH algorithm

 Such assumption is rare
– usually only much less of points are on CH

 Output sensitive algorithms
– Depend on: input size n and the size of the output h
– Are more efficient for small output sizes
– Reasonable time for CH is O(n log h)

Felkel: Computational geometry

(28)

Chan’s algorithm

 Cleverly combines Graham’s scan and Jarvis’s
march algorithms

 Goal is O(n log h) running time
– We cannot afford sorting of all points - W(n log n)
=> Idea: limit the set sizes to polynomial hc

the complexity does not change => log hc = log h
– h is unknown – we get the estimation later
– Use estimation m, better not too high => h § m § h2

 Partition points P into r-groups of size m, r = n/m
– Each group take O(m log m) time - sort + Graham
– r-groups take O(r m log m) = O(n log m) - Jarvis

Felkel: Computational geometry

(29)

Merging of m parts in Chan’s algorithm

 Merge r-group CHs as “fat points”
– Tangents to convex m-gon can be found in O(log m)

by binary search

[Mount][Mount]

r = n/m disjoint subsets
of size at most m

Felkel: Computational geometry

(30)

Chan’s algorithm complexity

 h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
– each step computes r-tangents, O(log m) each
– merging together O(hr log m)

 Complete algorithm O(n log h)
– Graham’s scan on partitions O(r .m log m)=O(n log m)
– Jarvis Merging: O(hr log m) = O(h n/m log m), …4a)

h § m § h2 = O(n log m)
– How to guess m? Wait!

r-groups of size m, r = n/m

Input:
Output:

Felkel: Computational geometry

(31)

Chan’s algorithm for known m
PartialHull(P, m)

points P
group of size m

1. Partition P into r = n/m disjoint subsets {p1, p2, …, pr} of size at most m
2. for i=1 to r do

a) Convex hull by GrahamsScan(Pi), store vertices in ordered array
3. let p1 = the bottom most point of P and p0 = (–¶, p1.y)
4. for k = 1 to m do // compute merged hull points

a) for i = 1 to r do // angle to all r subsets
Compute the point qi œ P that maximizes the angle — pk-1, pk, qi

b) let pk+1 be the point q œ {q1, q2, …, qr} that maximizes — pk-1, pk, q
(pk+1 is the new point in CH)

c) if pk+1 = p1 then return {p1, p2, …, pk}
5. return “Fail, m was too small”

O(log m)

[Mount]

Input:
Output:

Felkel: Computational geometry

(32)

Chan’s algorithm – estimation of m
ChansHull

points P
convex hull p1…pk

1. for t = 1, 2, … do {
a) let m = min(22^t, n)
b) L = PartialHull(P, m)
c) if L ∫ “Fail, m was too small” then return L

}
Sequence of choices of m are { 4, 16, 256,…, 22^t ,…, n } … squares

Example: for h = 23 points on convex hull of n = 57 points, the algorithm
will try this sequence of choices of m { 4, 16, 57 }

1. 4 and 16 will fail
2. 256 will be replaced by n

Felkel: Computational geometry

(33)

Complexity of Chan’s Convex Hull?

 The worst case: Compute all iterations
 tth iteration takes O(n log 22^t) = O(n 2t)
 Algorithm stops when 22^t ¥ h => t = lg lg h
 All t = lg lg h iterations take:

)log(lg2222

122 fact that theUsing

lglg1
lglg

1

lglg

1

1

0

hnOhnnnn h
h

t

t
h

t

t

k
k

i

i

==≤=

−=

+

==

+

=

2x more work in the worst case

Felkel: Computational geometry

(34)

Conclusion in 2D

 Graham’s scan: O(n log n), O(n) for sorted pts
 Divide & Conquer: O(n log n)
 Quick hull: O(n log n), max O(n2) ~ distrib.
 Jarvis’s march: O(hn), max O(n2) ~ pts on CH
 Chan’s alg.: O(n log h) ~ pts on CH

Felkel: Computational geometry

(35)

References
 [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark

Overmars: Computational Geometry: Algorithms and Applications,
Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 5, http://www.cs.uu.nl/geobook/

 [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 3 and 4.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

 [Chan] Timothy M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions., Discrete and Computational
Geometry, 16, 1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

