
1A4M35PAP Advanced Computer Architectures

Advanced Computer Architectures

02

Superscalar organization - Introduction
(Diversified dynamic pipelines)

Michal Stepanovsky

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2A4M35PAP Advanced Computer Architectures

Scalar pipeline

• Limitations of scalar pipelines:

• The maximal throughput is bounded by 1 IPC

• Unification – all instruction types into one pipeline => inefficient
design.. (i.e., memory phase even for ALU ops.)

• The stalling leads to waste cycles in previous pipeline stages
which induces unnecessary pipeline bubbles (rigid pipeline)
when these unused slots move through rest of pipeline

Program throughput:
W = 1 / T = IPC.fCLK / IC

- A deeper pipeline has fewer logic gate levels in each pipeline stage (which leads
to a shorter cycle time), but… (hardware overhead, instruction hazards, …)

3A4M35PAP Advanced Computer Architectures

Scalar pipeline – problem of unification

Problem of unification

• Different instruction types require different hardware
resources and processing. It is difficult and
simultaneously inefficient implement all requirements in
the unified pipeline.

• Different latencies: Some instruction types (i.e.,
floating-point instructions, multiply and divide) require
multiple/more execution cycles/stages to be processed.
Instructions that require long and possibly variable
latencies are difficult to unify with simple instructions
that require only a single cycle latency.

4A4M35PAP Advanced Computer Architectures

Scalar pipeline

• Requirements to stall pipeline for some instruction sequences

the pipeline is not adaptable

• scalar pipelines are "rigid" – instructions advance through
pipeline stages one after the other in program order (lockstep
fashion) and the need of stall in a certain stage is "spread" to
the previous stages

div R0, R1, R2
sub R3, R0, R4 - blocked
add R5, R6, R7 - blocked

Stalled instr.

Bypassing is
not allowed

5A4M35PAP Advanced Computer Architectures

Solution – superscalar pipeline

• The natural solution is to create a parallel pipeline

• Superscalar pipelines – descendants of scalar
pipelines, but not only parallel pipelines, but
diversified parallel pipelines!

• Each parallel branch of the pipeline can be specialized
to perform another function. Sometimes some of the
function pipelines are doubled.

6A4M35PAP Advanced Computer Architectures

Superscalar organization

 Superscalar pipeline:
• Multiple functional units in parallel (allows to process

simultaneously multiple instructions across pipeline stages)
• Significant hardware resources are needed for implementing

parallel pipelines
• Out-of-order execution is an important feature, instructions are

executed in the order that differs to original program – dynamic
pipelines

• Multiple instructions can be initiated in the same clock

• Combination of spatial and temporal parallelism

• The width (w) is equal to a number of parallel pipeline
branches (number of instructions which can be fetched,
decoded or completed in every cycle) – which can lead to a
potential speedup of w over the scalar pipeline

7A4M35PAP Advanced Computer Architectures

Superscalar organization

• Implementation requires additional hardware resources

• Each pipeline stage can potentially process and
advance up to w instructions in every cycle.

IF

D1

D2

EX

WB

IF

D1

D2

EX

WB
U pipe V pipe

5-stage pipeline in Intel
Pentium (w=2):
(two i486 pipelines)

Brian Case: Intel Reveals Pentium Implementation Details, Vol. 7, No. 4, March 29, 1993

The logic complexity in every pipeline stage can
increase by a factor of w. Circuicity for
interconnections can increase by a factor of w2.
The number of read and write ports of register
file has to be also increased. Similarly, additional
I-cache and D-cache ports…

Two ALU operations –
both read from the
register file. Two memory
operations – dual access.
But? (serialization – in
case of banks conflict)

8A4M35PAP Advanced Computer Architectures

Superscalar organization – diversified pipelining

• The hardware required for different instruction types can vary
significantly. For a scalar pipeline, all the diverse requirements must
be unified into a single pipeline. But each instruction type requires
only a related subset of scalar pipeline stage HW resources.

• Instead of implementing w identical pipes in a w-wide parallel
pipeline, diversified execution pipes are typically implemented

• It results in:
• Efficiency in HW resources,
• Different latency in different pipeline branches (add vs. div – “faster”

instructions can advance from shorter latencies)

• Elimination of stall of independent instructions in other branches
(Independence of parallel branches) – inter-instructions dependencies
have to be solved before distribution/dispatch into parallel branches

• Centralized control can be replaced by local independent and distributed
control

9A4M35PAP Advanced Computer Architectures

Superscalar organization – diversified pipelining

A diversified parallel pipeline with four execution branches in the EX
processing phase but only three in other processing phases (stages)

ALU MEM 1

MEM 2

FP1

FP 2

FP 3

BR

IF

ID

RD

EX

WB

 distribution of instructions into
branches (dispatching)

Pipeline Width = 3

10A4M35PAP Advanced Computer Architectures

Superscalar organization – dynamic pipelining

• In any pipelined design (except asynchronous pipeline), buffers are
required between two consecutive pipeline stages.

Stage i

Buffer

Stege i+1

In order

In order

In order

Out of order

• multi-entry buffers: usually small multi-ported RAM, independent
access (addressing) for write an read ports - an instruction can remain
in an entry of the buffer for many machine cycles and can be updated
or modified while resident in that buffer

• dynamic pipelining utilizes multi-entry buffers for out-of-order
instruction execution, an instruction can be stored and dispatched from
the buffer in a different order

11A4M35PAP Advanced Computer Architectures

Superscalar organization – dynamic pipelining

ALU MEM 1

MEM 2

FP1

FP 2

FP 3

BR

IF

ID

RD

EX

WB

Dispatch
buffer

Reorder
buffer

In order

Out-of-order

Out-of-order
(different ordering)

In order

Superscalar organization – dynamic pipelining

12A4M35PAP Advanced Computer Architectures

Superscalar organization – dynamic pipelining

• Dispatch buffer – is loaded with decoded instructions
according to program order and then they are dispatched
to the functional units potentially in an order different from
the program order

• Execution units (diversified pipeline) can exhibit different
latencies

• Completion buffer (or Reorder buffer) – retires (finishes)
the instructions in program order – required for precise
exception support (updating the machine state according
to the program order.)

13A4M35PAP Advanced Computer Architectures

Source buses

Write-back buses

Motorola 88110,
 year 1992.

Shen, J.P., Lipasti, M.H.: Modern Processor Design : Fundamentals of Superscalar Processors, First
Edition, New York, McGraw-Hill Inc., 2004

 Superscalar organization

Target instruction
cache

Target instruction
cache

Instruction
cache

Instruction
cache

Instruction
sequencer

and branch unit

Instruction
sequencer

and branch unit

S
co

re
b

o
ar

d
S

co
re

b
o

a
rd

Floating-point
register file

Floating-point
register file

General
register

file

General
register

file

History
buffer

History
buffer

Data
cache
Data

cache

Bus
interface

unit

Bus
interface

unit

Load/
store unit

Load/
store unit

Graphic
pack unit
Graphic

pack unit
Graphic
add unit
Graphic
add unit

Divider
unit

Divider
unit

Floating-point
add unit

Floating-point
add unit

 Multiplier
unit

 Multiplier
unit

 Bit field
unit

 Bit field
unit

 Integer
unit

 Integer
unit

 Integer
unit

 Integer
unit

• 1 bit-field(32-bit operands)
• 2 graphics (64-bit operands)
• 1 instruction/branch
• 1 data-cache

• 2 integer ALUs (32-bit operands)
• 1 FP-add (80-bit operands)
• 1 multiply (64-bit integer, 80-bit

FP operands)
• 1 divide (64-bit integer, 80-bit FP

operands)

14A4M35PAP Advanced Computer Architectures

Superscalar organization – execution phases and problems

• Phases of instruction
processing:

• Fetch

• Decode

• Dispatch

• Execute

• Complete

• Retire

Fetch

Decode

Dispatch

Execute

Complete

Retire

Instruction buffer

Dispatch buffer

Issuing buffer

Completion buffer

Store buffer

15A4M35PAP Advanced Computer Architectures

Superscalar organization – Fetch

• For superscalar pipelining of width w, fetch stage should be able to
fetch w instructions from the I-cache in every machine cycle

• The program counter (PC, sometimes named instruction pointer IP)
is used to fetch w instructions (Fetch group) in every cycle

• I-cache must be wide enough that each row can store w instructions
and that an entire row can be accessed at one time (another option
is to compose row from more simultaneously accessible blocks)

• The throughput of other stages cannot exceed the throughput of
fetch stage – fetch throughput is degraded by unaligned instructions
in I-cache and by branch/jump instructions (PC is changed) inside
fetch group or targets to the middle of group

16A4M35PAP Advanced Computer Architectures

Superscalar organization – Fetch of misaligned groups

…

000
001

111

…

00 01 10 11

 PC = 00001

Fetch group
Row width

Cache line

Solutions:

• Static – during compilation – the compiler receives I-cache
parameters, chooses optimal instruction placement; target of
branches are placed in proper memory locations

• Dynamic – by hardware at run time – modified internal
organization of the cache …

17A4M35PAP Advanced Computer Architectures

Superscalar organization – Fetch T-logic
Dynamic: If fetch group span over row boundary, but not over line/block
boundary, it is still possible to fetch the whole fetch group in one cycle …
IBM RS/6000 (two-way set associative I-cache with Auto-Realignment)

Line size: 16 instructions (64B), Fetch group 4 instructions

Program:
Instr. A0
Instr. A1
Instr. A2
Instr. A3
Instr. A4
Instr. A5

…

If PC addresses A0
then instructions
A0,1,2,3 can be
fetched without
problems (they belong
to same row)

If PC addresses A10, then
instructions A10 and A11
belong to one row, A12 and
A13 to the next one. The
task of T-logic is to detect
this case and increment
row index for these
instructions in respective
cache sections.

18A4M35PAP Advanced Computer Architectures

Superscalar organization – Fetch T-logic
Dynamic: If fetch group span over row boundary, but not over line/block
boundary, it is still possible to fetch the whole fetch group in one cycle …
IBM RS/6000 (two-way set associative I-cache with Auto-Realignment)

Line size: 16 instructions (64B), Fetch group 4 instructions

If line size boundary is not
crossed then T-logic results in
complete fetch group read in
single cycle independently to
PC address. If the boundary is
crossed, then memory access
can be necessary. For 16
instructions cache line size, 16
start offsets of the fetch group
are possible. Average
throughput with T-logic is
(13*4+1*3+1*2+1)/16=3,63
instr/cycle, or 1,188
cycle/fetch group instead of
(4*4+4*3+4*2+4)/16=2,5
instr/cycle (or 1,75 cycle/fetch
group)

19A4M35PAP Advanced Computer Architectures

Superscalar organization – Decoding

• A large number of comparators are needed for determining register
dependences between instructions

• Register files must be multi-ported to allow multiple simultaneous accesses

• Multiple buses – to route the accessed operands to their destination buffers

… CISC – instruction identification
RISC – inter-instruction dependencies

Fetch group

• Complexity strongly influenced by pipeline width and ISA => RISC
vs. CISC (instructions of different length with even 1 byte increment)

• Decode tasks: 1. identification of the individual instructions (even
lengths for CISC), 2. determination of the instruction types,
3. detection of inter-instruction dependencies and determine set of
independent instructions to dispatch to next stages

• fetch group – centralized decoding..

20A4M35PAP Advanced Computer Architectures

Superscalar organization – Decoding

Shen, J.P., Lipasti, M.H.: Modern Processor Design : Fundamentals of Superscalar Processors, First
Edition, New York, McGraw-Hill Inc., 2004

Fig. The Fetch/Decode Unit of the Intel P6 Superscalar Pipeline

21A4M35PAP Advanced Computer Architectures

Superscalar organization – Decoding

• Predecoding
• I-cache miss – partial decoding of the cache block when it is transferred

from the memory

• Both CISC and RISC (PowerPC, MIPS R10000) – identification of
branches, independent instructions, …

Predecode logic

Decode, Translate
and Dispatch

I-cache

From Memory

64

64 +40

128 +80

8 instruction
bytes

4 micro-ops

Additional bits contain information about
identify
control-flow changing branch instructions
within the fetch group, beginning (and end) of
instructions (mainly for CISC), corresponding
microinstructions count, a location of
instruction operation code…
Advantages?
Disadvantages?

AMD K5
Predecode bits significantly simplify instruction
decoding and allow the simultaneous decoding of
multiple IA32 instructions.

22A4M35PAP Advanced Computer Architectures

Superscalar organization – Dispatching

• The primary goal of dispatching is to route instruction to the appropriate
functional unit for execution (diversified pipelines: multiple heterogeneous
functional units used according to instruction type)

• Operands values are not necessarily ready for some instructions. Solved
by dispatch stall or by reservation stations (buffers) where instruction waits
for previous instructions providing operands. Following instructions with all
operands ready can be dispatched → data flow concept on the lowest
level – Tomasulo algorithm and registers renaming to solve WAW
hazards

• We distinguish:
• Centralized reservation stations

• Distributed reservation stations

• Hybrid reservation stations (or clustered)

• Definition refinement:
• dispatching - instruction association to the functional unit for execution

• issuing - initializing execution in a functional unit

23A4M35PAP Advanced Computer Architectures

Superscalar organization – Dispatching

Centralized reservation
stations (Dispatch buffer)

Completion buffer
Finish

Execute

Dispatch (Issue)

Complete

Centralized reservation stations:

Consumes more hardware resources, but effectively utilized

24A4M35PAP Advanced Computer Architectures

Superscalar organization – Dispatching

Dispatch buffer

Distributed reservation
stations

Completion buffer

Issue

Finish

Execute

Dispatch

Complete

Distributed reservation stations:

Less HW resources, reservation stations with one write and
one read port

25A4M35PAP Advanced Computer Architectures

Superscalar organization – Execution

• Current trend – more parallel and more diversified pipelines
(more functional units and having these functional units be more specialized,
older generation -- branch for integer operations and one for floating point)

• One pipeline branch – can process more operations on
different operands

• Number of functional units (EX phase) exceeds pipeline width
• With an increased number of functional units demand on

hardware resources increases as well

- caused by need of forwarding from functional units outputs to
their inputs, increased number of buses and match logic
(mechanism of operands routing requires to solve new
structural hazards), reservation stations need to monitor
availability (ready state) of operands values (tag matching).
Each waited for operand in station needs to monitor all buses where result
can appear. Number of tags/ways of the bus corresponds to the number of
ready results in a single cycle

26A4M35PAP Advanced Computer Architectures

Superscalar organization – Execution

What is the best mix of functional units for a superscalar
pipeline???

• It depends on application domain… and HW complexity…
(For example, typical programs having 40% ALU instructions, 20%
branches, and 40% load/store instructions would require 2:1:2 rule
=> two ALU units, 1 branch unit, 2 Load/Store units)

• The total number of functional units very often exceeds the actual
width of the pipeline. Why???

• Bottleneck due to structural dependences (mismatch of instruction
mix and functional unit mix) and a high level of diversification

27A4M35PAP Advanced Computer Architectures

Superscalar organization – Execution

Shen, J.P., Lipasti, M.H.: Modern Processor Design : Fundamentals of Superscalar Processors, First
Edition, New York, McGraw-Hill Inc., 2004

28A4M35PAP Advanced Computer Architectures

Superscalar organization – Completion and Retiring

• An instruction is considered completed when it finishes
execution and updates the machine state. An instruction
finishes execution when it exits the functional unit
(execution phase) and enters the completion buffer.

• Additional cycles can be required before an instruction
result is available in D-cache. The instruction is
considered retired when it exits the store buffer and
updates the D-cache.

• These terms (completed and retired) are sometimes
used interchangeable ... (as well as dispatching and
issuing, seldom the Completion and Retiring concepts
are shifted to a higher level/phase, i.e., to Finishing and
Completion)

29A4M35PAP Advanced Computer Architectures

Superscalar organization – Completion and exceptions

• Precise exception support requires reorder/completion
buffer

• Instruction completion must occur in program order
• When an exception occurs (in functional units, ...), the

excepting instruction is tagged in the completion buffer
• The completion stage checks each instruction before

that instruction is completed
• When a tagged instruction is detected, it is not allowed

to be completed before it is not the oldest instruction in
the completion buffer. Then this instruction is not
completed, and preceding processor state is saved.
Following instructions and in progress operations in
pipelines are discarded.

30A4M35PAP Advanced Computer Architectures

Superscalar organization – Completion and Retiring

Instruction / decode buffer

Dispatch buffer

Reservation stations

Reorder / Completion buffer

Store buffer

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

31A4M35PAP Advanced Computer Architectures

Superscalar organization – Summary

• Out-of-order superscalar pipeline supports out-of-order
execution (processing) of instructions only between
Dispatch and Complete. Instructions remain in
reservation stations for one or more cycles while waiting
for their source operands. When operands are available,
they are issued into the functional units (data flow
principle). After execution (when leaving functional unit),
the instruction enters into the reorder/completion buffer.
Instructions leave the reorder/completion buffer in
program order (completion) when all previous instructions
are completed. The architectural state of CPU respects
the sequential semantic of the program, corresponds to
last completed instruction.

32A4M35PAP Advanced Computer Architectures

Literature

References:
• Shen, J.P., Lipasti, M.H.: Modern Processor Design : Fundamentals

of Superscalar Processors, First Edition, New York, McGraw-Hill Inc.,
2005

• Brian Case: Intel Reveals Pentium Implementation Details, Vol. 7,
No. 4, March 29, 1993

	Superscalar organization - Introduction(Diversified dynamic pipelines)
	Scalar pipeline
	Scalar pipeline – problem of unification
	Scalar pipeline 1
	Solution – superscalar pipeline
	Superscalar organization
	Superscalar organization 1
	Superscalar organization – diversified pipelining
	Superscalar organization – diversified pipelining 1
	Superscalar organization – dynamic pipelining
	Superscalar organization – dynamic pipelining
	Superscalar organization – dynamic pipelining 1
	Superscalar organization 2
	Superscalar organization – execution phases and problems
	Superscalar organization – Fetch
	Superscalar organization – Fetch of misaligned groups
	Superscalar organization – Fetch T-logic
	Superscalar organization – Fetch T-logic 1
	Superscalar organization – Decoding
	Superscalar organization – Decoding 1
	Superscalar organization – Decoding
	Superscalar organization – Dispatching
	Superscalar organization – Dispatching 1
	Superscalar organization – Dispatching 2
	Superscalar organization – Execution
	Superscalar organization – Execution 1
	Superscalar organization – Execution 2
	Superscalar organization – Completion and Retiring
	Superscalar organization – Completion and exceptions
	Superscalar organization – Completion and Retiring 1
	Superscalar organization – Summary
	Literature

