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Olufsen, Mette S., Hien T. Tran, Johnny T. Ottesen, Re-
search Experiences for Undergraduates Program, Lewis A.
Lipsitz, and Vera Novak. Modeling baroreflex regulation of heart
rate during orthostatic stress. Am J Physiol Regul Integr Comp
Physiol 291: R1355–R1368, 2006. First published June 22, 2006;
doi:10.1152/ajpregu.00205.2006.—During orthostatic stress, arterial
and cardiopulmonary baroreflexes play a key role in maintaining
arterial pressure by regulating heart rate. This study presents a
mathematical model that can predict the dynamics of heart rate
regulation in response to postural change from sitting to standing. The
model uses blood pressure measured in the finger as an input to model
heart rate dynamics in response to changes in baroreceptor nerve
firing rate, sympathetic and parasympathetic responses, vestibulo-
sympathetic reflex, and concentrations of norepinephrine and acetyl-
choline. We formulate an inverse least squares problem for parameter
estimation and successfully demonstrate that our mathematical model
can accurately predict heart rate dynamics observed in data obtained
from healthy young, healthy elderly, and hypertensive elderly sub-
jects. One of our key findings indicates that, to successfully validate
our model against clinical data, it is necessary to include the vestibulo-
sympathetic reflex. Furthermore, our model reveals that the transfer
between the nerve firing and blood pressure is nonlinear and follows
a hysteresis curve. In healthy young people, the hysteresis loop is
wide, whereas, in healthy and hypertensive elderly people, the hys-
teresis loop shifts to higher blood pressure values, and its area is
diminished. Finally, for hypertensive elderly people, the hysteresis
loop is generally not closed, indicating that, during postural change
from sitting to standing, baroreflex modulation does not return to
steady state during the first minute of standing.

mathematical modeling; heart rate control; baroreflex function; sym-
pathetic and parasympathetic responses; vestibulo-sympathetic reflex

BAROREFLEXES PLAY A SIGNIFICANT role in short-term cardiovas-
cular control in adaptation to orthostatic stress. Postural change
is a physiological stimulus that activates the baroreflex feed-
back control system. Standing up is clinically relevant for
elderly people who are at risk for orthostatic hypotension due
to baroreflex impairment. Blood pressure rapidly decreases
upon standing and then increases to or above the baseline
within the first minute of standing. Heart rate increases in
response to a blood pressure decline and decreases as a re-
sponse to a blood pressure increase. These responses are often
diminished in elderly people and in people with cardiovascular
diseases.

Current methodologies to assess baroreflex sensitivity in-
clude both time and frequency domain techniques. In the time

domain (45), baroreflex sensitivity is calculated by relating the
change in heart period to beat-to-beat blood pressure or muscle
sympathetic nerve activity (MSNA) in response to physiolog-
ical (e.g., postural change) and pharmacological stimuli (e.g.,
injection of vasoactive agents). In the frequency domain,
baroreflex sensitivity is determined from spectral analysis of
spontaneous fluctuations in heartbeat and blood pressure,
which are thought to reflect parasympathetic and sympathetic
responses (30, 48).

With aging, baroreflex sensitivity (24) and vagally mediated
cardiac variability (9) become attenuated, and sympathetically
mediated fluctuations in vascular tone become prominent.
Chronic elevation of sympathetic tone and blood pressure in
hypertension is associated with further impairment of barore-
flex function, reduction of heart rate variability, increased
vascular resistance, and the shift of baroreflex operating range
toward higher blood pressure values (3, 16). Endothelial dysfunc-
tion and circulating vasoconstrictor factors contribute significantly
to decreased baroreflex sensitivity and disinhibition of sympa-
thetic activity that occurs with aging and hypertension (7).

From observations discussed above, it becomes clear that
baroreflex feedback control plays a crucial role in heart rate
regulation, and that development of reliable measures for
baroreflex function is needed to assess the integrity of the
autonomic nervous system. The main difficulty in assessing
autonomic function based on heart rate and blood pressure data
is that an inverse problem must be solved, because only the
output (heart rate) can be measured while internal variables,
i.e., baroreceptor firing rate, sympathetic and parasympathetic
tone, or concentrations of neural hormones catecholamine
(epinephrine and norepinephrine) and acetylcholine have to be
estimated. Most of the previous studies mentioned above use
either spectral analysis or simple linear regression to assess
autonomic function. While these simple models may provide
valuable insight into heart rate regulation, the effects of non-
linear feedback control and the contributions from each of the
intermediate steps remain unknown. A few studies use math-
ematically more advanced methods that are based on nonlinear
control theory and nonlinear differential equations (20, 31, 33,
35, 40). However, these models were not based on well-
established physiological theory, and none of these models was
validated against clinical data.

To study the relation between heart rate and intermediate
controls, we developed a nonlinear mathematical model that
explicitly represents each component of the baroreflex control
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system, and we used this model to study effects of aging and
hypertension on baroreflex feedback control of heart rate dy-
namics. This study is focused on modeling dynamics of heart
rate regulation; however, the modeling philosophy and tech-
nique as presented here can be applied to more complex
cardiovascular models that incorporate all mechanisms in-
volved in short-term blood pressure and blood flow velocity
regulation (32). That is, we modeled heart rate dynamics as a
function of blood pressure, but ignored the feedback that heart
rate changes and regulation of peripheral vascular resistance,
vascular tone, and cardiac contractility have on blood pressure.
Furthermore, our model does not include effects of respiration,
and, hence, it does not account for cardiopulmonary reflexes,
which are known to play a role during heart rate regulation.

Our mathematical model for baroreflex feedback control of
heart rate responses to postural change is divided into four
submodels connected in series (see Fig. 1). The first submodel
is an afferent trigger model, which uses blood pressure mea-
sured in the finger as an input to predict the firing rates of
baroreflex afferent fibers. For the remainder of this study, we
assume that the finger blood pressure can be used in place of
carotid blood pressure, which was not measured in this study.
This assumption is reasonable, since the finger and the carotid
pressure waveforms have similar shape, even though the am-
plitude of the finger pressure may be higher and the mean
finger pressure may be lower than the carotid pressure. Fur-
thermore, we assume that the arterial wall mainly displays
elastic behavior. Hence, the change of stretch of the arterial
wall is proportional to the change in blood pressure.

The second submodel, which represents the central nervous
system, uses baroreceptor afferent nerve activity as an input to
predict sympathetic and parasympathetic firing in response to
the rate of change of the mean blood pressure. Within one to
two cardiac cycles following postural change, the parasympa-
thetic response is decreased, leading to an immediate increase
in heart rate. This response is mediated through a decreased
release of acetylcholine at the postsynaptic nerve terminal,
which leads to cardiac acceleration. Subsequently, the sympa-
thetic firing rate increase leads to an increase in norepinephrine
release, which, in turn, increases heart rate. For healthy young
people, the sympathetic response is delayed 6–10 s following
postural change, whereas for healthy and hypertensive elderly
people the sympathetic response may be further delayed. In our
mathematical model, we explicitly incorporate the delay in the

sympathetic response. This submodel also includes the mech-
anisms underlying the initial heart rate increase that precedes
the blood pressure decline observed during standing. It is not
clear what is the main mediator of this early response. A study
by Borst et al. (2) attributed this initial heart rate increase to the
response of an exercise reflex, which may be mediated by
central command and activation of MSNA. A recent study (49)
has shown that vestibular input to the otolith organs modulates
muscle MSNA and that this activation is related to blood
pressure changes. An additional study (21) during head rota-
tion with tilt showed that the MSNA reflex might be one of the
earliest mechanisms to sustain blood pressure upon standing.
Similar observations have been found during head-down rota-
tion (38) and during climbing (53). A common conclusion
drawn in these studies is that the vestibulo-sympathetic reflex
contributes to blood pressure maintenance, and, because of its
short latency, this reflex may be one of the earliest mechanisms
that maintain blood pressure upon standing, and it precedes the
baroreflex-mediated response. The studies summarized above
indicate that vestibulo-sympathetic reflex has an impact on
initial heart rate regulation; however, other factors, in particu-
lar central command, may also play a significant role. The main
effect of these mechanisms is their contribution to the increase
in heart rate that precedes the baroreflex-mediated response.
Because of the contributions from the vestibular nerves and
from central command, we chose to model this initial heart rate
increase by adding an impulse function to the baroreflex-
mediated sympathetic response. We could possibly have mod-
eled the vestibular feedback using a more complex model.
However, at the present, sufficient biological information is not
readily available to develop a physiologically based model. In
the remainder of the paper, we will treat this early control as a
vestibulo-sympathetic response, but we do note that it is
possible that the response has some component of central
command and cardiopulmonary reflexes embedded in the re-
sponse.

The third submodel uses sympathetic and parasympathetic
responses as an input to predict concentrations of the neuro-
transmitters norepinephrine and acetylcholine. The fourth sub-
model, the effector model, uses concentrations of neurotrans-
mitters as an input to predict heart rate. Finally, we provide
quantitative comparisons of our model with physiological heart
rate data from healthy young, healthy elderly, and hypertensive
elderly people during postural change from sitting to standing.

METHODS

Data Collection

Model validation used data from 30 people in three groups: 1) 10
healthy men and women ages 20–40 yr; 2) 10 healthy men and
women ages 60–80 yr with no known systemic disease, no cardio-
vascular medications, no history of head or brain injury, and no
history of more than one episode of syncope; and 3) 10 men and
women ages 60–80 yr, with a diagnosis of systolic hypertension (with
a systolic blood pressure �160 mmHg), who were not previously
treated for hypertension. All data collection procedures were reviewed
and approved by the institutional review board of Hebrew SeniorLife,
and all subjects provided written informed consent.

Each subject was instrumented with a three-lead ECG to obtain
heart rate. A photoplethysmographic device on the middle finger of
the nondominant hand was used to obtain noninvasive beat-to-beat
blood pressure (Finapres device, Ohmeda Monitoring Systems, Engle-

Fig. 1. Schematic diagram of the mathematical model for the baroreflex
feedback control of heart rate (HR). Four submodels have been developed: an
afferent baroreceptor nerve firing model, a model predicting sympathetic and
parasympathetic outcomes, including the input from the vestibular system, a
model predicting concentrations of norepinephrine and acetylcholine, and a
model for HR.
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wood, CO). To eliminate effects of gravity, the hand was held at the
level of the right atrium and supported by a sling. All physiological
signals were digitized at 50 Hz (Windaq, Dataq Instruments) and
stored for offline analysis.

After instrumentation, subjects sat in a straight-backed chair with
their legs elevated at 90° in front of them. After 1 min of stable
signals, the subjects were asked to stand. Standing was defined as the
moment both feet touched the floor. Two 5-min sit-to-stand trials were
performed for each subject. These data were used for validation of our
mathematical model, but have been published earlier (see Ref. 29).

Modeling Baroreflex Feedback Control of Heart Rate

The baroreflex feedback control maintains a normal blood pressure
by regulating heart rate and vascular resistance in response to transient
changes in stretch of arterial baroreceptors (17). During postural
change from sitting to standing, �500 ml (19) of blood are pooled in
the legs as the result of gravitational force. As a consequence, there is
a transient decline in aortic pressure and in cardiac output. To
compensate for these changes, the frequency of afferent impulses in
the aortic and carotid sinus nerves is reduced, leading to parasympa-
thetic withdrawal and sympathetic activation. Throughout this paper,
the nerve activity will be referred to as the baroreceptor firing rate, or
simply the firing rate. Sympathetic activation leads to an increased
release of neural hormonal catecholamines (norepinephrine) and by
release of epinephrine from the adrenal gland, which contribute to
restoration of blood pressure by increasing heart rate, cardiac contrac-
tility, vasoconstrictor, and venoconstrictor tone. In addition, descend-
ing impulses from the cerebral cortex and central autonomic network
further modulate adaptation to upright posture by reducing parasym-
pathetic outflow. This is a rapid process capable of cardiac accelera-
tion within a heartbeat.

In this section, we describe a comprehensive mathematical model
for the baroreflex regulation of heart rate. The basic structure of the
model (see Fig. 1) consists of the following components: the arterial
blood pressure (the input), the afferent baroreceptor nerve fibers going
to the central nervous system, the central nervous system, the efferent
sympathetic and parasympathetic nerve fibers going to the heart, and
the effects of neurotransmitters (norepinephrine and acetylcholine) on
heart rate.

Afferent baroreceptor activity. This part of our model describes the
dynamics of the baroreceptors afferent signaling to a change in arterial
blood pressure. The baroreceptors are sensitive to stretch of the
carotid arterial wall, which is caused by changes in arterial pressure
(18, 28). Due to the complex composition of the arterial wall,
experiments that studied baroreceptor response to a change in arterial
pressure show several nonlinear characteristics (5, 43). The frequency
of firing rate increases with increased arterial pressure. There is a wide
variation in threshold for different receptors. Sufficiently fast de-
creases in pressure cause a complete cessation of firing rate, which,
after a few seconds, begins to discharge again at a frequency charac-
teristic of the new pressure level. Finally, the firing rate response

curve for elderly people and, in particular, for people with hyperten-
sion translates to the right along the pressure axis, compared with
curves for healthy young people (8). Despite the above-mentioned
knowledge of the baroreceptors’ nonlinear characteristics, the mecha-
noelectrical transduction that takes place in the baroreceptors them-
selves is not well known (5, 6, 23). Whether it is the instantaneous
pressure, an average pressure, or a combination of both that triggers
the baroreceptors’ afferent signaling is not clear from measurements
(47). Earlier, there has been some effort to model the nonlinear
characteristics of the baroreceptors using a different assumption on
various forms of input. For example, Landgren (25) and Robinson and
Sleight (41) suggested simple functional descriptions of the response
to a step change in pressure only. Other studies (11, 35, 36, 41, 42, 47,
50, 51) suggested various models based on ordinary differential
equations. Our model, including initial choices for parameter values,
follows our earlier work described in Refs. 34–36. More specifically,
we model the nonlinear response in firing rate n as a function of the
rate of change of mean arterial pressure using the following system of
ordinary differential equations (see Table 1)

dni

dt
� ki

dp�

dt

n�M � n�

�M/2�2 �
ni

�i

(1)

where i is short S, intermediate I, and long L, and n � nS � nI � nL �
N; M is the maximum firing rate; p� is pressure; t is time; and �i is the
time constant associated with ni. In the above equation, the change in
nerve firing rate is directly proportional to the rate of change of the
mean arterial pressure dp� /dt. To account for the wide variation in
thresholds for the different receptors, three characteristic time scales
were included: short [�1 (s)], intermediate [�5 (s)], and long [�250
(s)], represented by the time constants �S, �I, and �L, respectively. The
arterial wall consists of viscoelastic tissue embedded with nerve
fibers. The relaxation and stretch of the arterial wall involves different
mechanisms (14); thus in Eq. 1 it is assumed that the arterial walls
constrict more easily than they dilate. Hence the response in firing rate
occurs faster during pressure decrease than during pressure increase.
The change of sign in the dp� /dt term in Eq. 1, which corresponds to
the increase and decrease in the mean pressure, accounts for this
hysteresis effect. The variables ni, i � S, I, L, represent deviations
from the baseline firing rate N. Finally, the first term on the right-hand
side, ki (dp� /dt)n(M 	 n)/(M/2)2, implies that the effect of the rate of
change in the mean pressure in firing rate lies between the physio-
logical threshold values n � 0 and n � M, respectively. The maxi-
mum firing rate M is chosen to be 120 in all simulation studies. Values
for the parameters �S, �I, �L, kS, kI, KL, and M are based on estimates
for animals reported in the literature (4, 12, 13, 25, 41).

Because the instantaneous pressure oscillates from beat to beat, our
motivation for using the mean arterial pressure is to obtain stable
numerical simulation results. Using ideas from Ref. 32, mean pressure
values are computed as weighted averages, where the present is
weighted higher than the past, according to the following expression

Table 1. Neural firing rate dynamics, i.e., n calculated as given in Eq. 1

Sitting
(t 
 60)

Mean Value

Transition
(60 
 t 
 80)

Minimum Value

Transition
(60 
 t 
 80)

Time
Standing
(t � 80)

Healthy young 99.31�17.89 30.27�13.71 67.75�1.49 90.57�14.10
Healthy elderly 105.55�13.15 68.36�14.51 69.90�3.71 91.72�16.49
Hypertensive elderly 101.97�9.40 64.06�13.90 69.07�2.82 87.67�10.54
P values

Young vs. healthy elderly 0.225 0.000* 0.028* 0.819
Young vs. hypertensive elderly 0.542 0.000* 0.082† 0.456
Healthy elderly vs. hypertensive elderly 0.306 0.328 0.411 0.337

t, Time. The three groups are as follows: healthy young subjects, healthy elderly subjects, and hypertensive elderly subjects. *Significant difference between
the two groups (P 
 0.05); †display differences (P 
 0.1).
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p� �t� � �
	�

t

p�s�e	��t	s�ds (2)

where � (1/s) is the history weighing parameter, which accounts for
the number of cardiac cycles included in the calculation of mean
pressure, i.e., a small value of � gives rise to a slow exponential
decay, and thus more cardiac cycles are included in the calculation of
mean pressure, while a large value of � gives rise to a fast exponential
decay, and thus only a few cardiac cycles are included in the mean
pressure calculation. To incorporate the mean arterial blood pressure
into the rest of our mathematical model, which is described by
ordinary differential equations, we differentiate the integral Eq. 2 to
obtain a differential equation for the mean pressure

dp�

dt
� ��p � p�� (3)

Central nervous system. This submodel describes effects of the
afferent baroreceptor nerve activity on efferent parasympathetic and
sympathetic responses. This model is empirical, but it is based on
well-known experimental facts. The parasympathetic response Tpar is
known to follow the “direct law”, i.e.

Tpar�n� �
n�t�

M
(4)

whereas the sympathetic response Tsym follows the reciprocal law (34,
35). In addition, experimental studies have revealed that there is a
time delay of between 6 and 10 s for the peak response to appear in
the sympathetic nervous system and almost instantaneous in the
parasympathetic nervous system (50, 52). This is accounted for by
introducing a time delay �d. Furthermore, the parasympathetic re-
sponse has an inhibitory effect on the sympathetic response (27).
Finally, experiments in humans indicated that, during postural change,
the vestibulo-sympathetic reflex acts to defend against a possible
sustained hypotensive episode before a drop in arterial pressure is
sensed by the baroreceptors (21, 38, 39, 49, 53). It should be
emphasized that the central command can contribute to this response.
To account for these effects, we have modeled the sympathetic
response as

Tsym �
1 � n�t � �d�/M � u�t�

1 � �Tpar�n�
(5)

where � represents the dampening factor of the parasympathetic
response, and u(t) is the impulse function accounting for the regula-
tion of the sympathetic nerve activity by the vestibulo-sympathetic
system. This impulse response is modeled as a parabolic function
given by

u�t� � 	�b�t � tm��2 � u0, b � � 4u0

�tstop � tstart�
2 ,

and tm �
tstart � tstop

2

(6)

The parameters tstart and tstop are the start and stop time of the impulse,
and u0 is the amplitude of the response. This empirically based model
for the vestibulo-sympathetic reflex is designed so that its maximal
effect on the sympathetic response occurs halfway between the onset
and the end of the vestibulo-sympathetic reflex. It is important to note
that we were not able to accurately predict measured heart rate
without inclusion of this impulse response function.

Neurotransmitters norepinephrine and acetylcholine. Presynaptic
and postsynaptic regulation of cardiac response is modulated by
several neurotransmitters that have inhibitory, excitatory, or both
effects on cardiac function. Neurotransmitter release is not limited to
centrally mediated neural traffic but may be triggered in response

Fig. 2. The panels show pulsatile (p; solid line) and mean (gray line) blood pressure
(p�; mmHg) as a function of time (s). Results are shown for a representative young
subject (A), healthy elderly subject (B), and hypertensive subject (C). The subject
stands up at time t � 60 s, indicated on the graphs by the dotted vertical line.
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toneurotransmitters and paracrine substances from blood or nearby
tissue. In this model, we have limited the parasympathetic neurotrans-
mitter response to acetylcholine and of the sympathetic response to
norepinephrine and their effects on heart rate. We have not assessed
the interactions between them, nor the effects of other substances that
may affect the heart rate. We model concentrations of norepinephrine
Cnor and acetylcholine Cach as linear differential equations with
forcing terms that depend on the sympathetic (Tsym) and parasympa-
thetic (Tpar) responses. Equations for concentrations are kept on
nondimensional form to reduce the total number of parameters to be
predicted,

dCnor

dt
�

	Cnor � Tsym

�nor

and
dCach

dt
�

	Cach � Tpar

�ach

(7)

where �nor and �ach are time constants.
Heart rate. As a response to the decrease in blood pressure, heart

rate is increased by the sympathetic system through an increased
release of norepinephrine and by parasympathetic withdrawal through
a decreased release of acetylcholine. In this study, we modeled heart
rate in response to these chemical concentrations using an integrate-
and-fire model of the form

d�

dt
� H0�1 � MSCnor � MPCach� (8)

where MS and MP are scaling factors for sympathetic and parasym-
pathetic response, respectively, and H0 � 100 (beats/min) is the
intrinsic heart rate when denervated, i.e., without any sympathetic or
parasympathetic stimulation (1, 10, 15, 17). In this model, a heartbeat
occurs every time the time-dependent function � passes the value 1.
When this event occurs, � is reset to zero. If the heart beats at
consecutive times ti and ti�1, then the heart rate (HR) is given by
HR � 1/(ti�1 	 ti) (see Fig. 2).

Parameter Estimation

The mathematical models for heart rate regulation described in Eqs.
1–8 contain a total of 16 unknown parameters denoted by q� � (kS, kI,
kL, �S, �I, �L, N, �, �, u0, tstart, tstop, �nor, �ach, MS, MP)T. To estimate
these parameters from the experimental data, we formulate an inverse
least squares problem minimizing the difference between the mea-
sured and computed values of heart rate. That is, we seek to find q� to
minimize the cost functional (J )

J �
1

Nd
�
i�1

Nd

�HRm�ti� � HRd�ti���J�2 (9)

where Nd is the number of measurements, HRd(ti) are the measured
values of heart rate obtained at time ti, and HRm(ti) are heart rate
values obtained from solving the mathematical models (Eqs. 1–8) at
the same times where the data are recorded.

The differential equations are solved using MATLAB’s (The Math-
Works, Natick, MA) solver ode15s, which is a variable-order, vari-
able-step solver for stiff ordinary differential equations. It is based on
the numerical differentiation formulas with the option of using the
backward differentiation formula, also known as Gear’s method. As it
is a variable-step solver, the numerical solutions are, in general,
computed at times that are, in general, not the same as those of the
experimental data. Hence, to obtain computed values of HR at the
same times where experimental data are recorded, numerical interpo-
lation is required to evaluate the computed value at the same temporal
points where the experimental data were measured. Finally, because
our mathematical models are divided into four parts in series, they are
solved sequentially with the output of one part being used as the input
for the next submodel, as shown in Fig. 1. However, it should be
emphasized that, during the parameter estimation process, the model
was considered as one integrated component. That is, all unknown
parameters in the model were identified simultaneously.

For biological reasons, three of the unknown parameters, N, MS,
and MP, are further constrained by upper and lower bounds. The
resting firing rate N cannot be larger than the maximum firing rate M.
Furthermore, we assume that it cannot be smaller than M/2. MS and
MP are both assumed to be bounded by 0 and 1 (0 � MS, MP � 1).
These bounds on the parameters imply that the optimization in Eq. 9
now becomes a constrained minimization problem. To avoid solving
a constrained minimization problem, which is computationally more
expensive and difficult than an unconstrained problem, we parame-
terize the constrained parameters N, MS, and MP as follows

N �
M

2
�

�2

1 � �2 �M �
M

2
� ,

(10)

Ms �
�s

2

1 � �s
2, and MP �

�P
2

1 � �P
2

where 0 � �, �S, �P 
 �. That is, we optimized the parameterized
constants �, �S, and �P (instead of N, MS, and MP). For biological
reasons, all unknown parameters are assumed to be positive. This

Table 2. Mean parameter values, standard deviations, and P values for the three groups of subjects:
healthy young, healthy elderly, and hypertensive elderly

J
(Eq. 9)

kS

(Eq. 1)
kI

(Eq. 1)
kL

(Eq. 1)
�S

(Eq. 1)
�I

(Eq. 1)
�L

(Eq. 1)
N

(Eq. 1)
�

(Eq. 3)
�

(Eq. 5)
�d

(Eq. 5)
u0

(Eq. 6)
tstart

(Eq. 6)
tstop

(Eq. 6)
�nor

(Eq. 7)
�ach

(Eq. 7)
MS

(Eq. 8)
MP

(Eq. 8)

Healthy young
15.2

�6.8
3.06

�2.24
1.91

�1.34
2.22

�1.30
0.60

�0.69
5.26

�4.86
250

�24
100

�19
0.78

�0.58
4.48

�2.36
6.12

�1.92
0.93

�0.52
58.0

�1.0
64.8

�2.5
0.72

�1.01
1.32

�1.48
0.99

�0.02
0.45

�0.17

Healthy elderly
3.36

�1.90
3.51

�2.93
0.69

�1.17
1.62

�0.92
0.40

�0.50
3.93

�2.45
246

�52
108

�13
1.31

�1.32
7.16

�4.75
8.89

�1.89
0.66

�0.52
58.9

�2.16
66.5

�4.17
1.46

�1.95
2.30

�4.27
0.92

�0.22
0.45

�0.09

Hypertensive elderly
4.52

�2.76
3.47

�3.77
0.74

�0.77
1.18

�1.53
0.51

�1.00
4.59

�1.76
250

�32
105

�10
1.11

�0.91
7.73

�6.28
10.2

�6.38
0.73

�0.50
58.1

�1.50
64.5

�2.12
1.24

�2.31
0.43

�0.54
0.97

�0.08
0.38

�0.10
P values

Young vs. healthy
elderly 0.00* 0.60 0.01* 0.11 0.31 0.29 0.71 0.19 0.13 0.04* 0.00* 0.12 0.09† 0.66 0.16 0.36 0.22 0.94

Young vs.
hypertensive
elderly 0.00* 0.68 0.00* 0.03* 0.76 0.54 0.96 0.37 0.20 0.04* 0.01* 0.21 0.64 0.16 0.38 0.01* 0.42 0.09†

Healthy elderly vs.
hypertensive
elderly 0.12 0.97 0.87 0.26 0.65 0.32 0.73 0.48 0.55 0.74 0.38 0.66 0.17 0.05† 0.74 0.04* 0.32 0.02*

For each parameter, its equation is in parentheses. *Significant difference between the two groups (P 
 0.05); †some differences (P 
 0.1). The first column
shows the cost calculated using Eq. 9, the subsequent columns display all model parameters identified using the Nelder Mead simplex method. See METHODS for
definition of terms.
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positive constraint in the parameters can be enforced mathematically
by replacing the parameters with their squared values in the mathe-
matical models.

Optimization methods for unconstrained minimization problems
fall into two classes: gradient-based methods and sampling methods.
It is well known that gradient-based methods perform very well when
the optimization landscape is relatively smooth (22). However, for
many applications, including heart rate regulation, the nonlinear
interaction of biological mechanisms can give rise to nonsmoothness
and nonconvexity in the landscape, which can defeat most gradient-
based methods. In this paper, we employ the Nelder Mead method
developed by Kelley (22), which does not require gradient informa-
tion, but rather samples the objective function (10) on a stencil or
pattern to determine the progress of the iteration and whether or not to
change the size, but not the shape of the stencil. In essence, given Np

number of unknown parameters to be estimated, the Nelder Mead
method will form a simplex with Np � 1 vertices. It then attempts to
minimize the objective function by replacing the simplex point that
has the highest function value (i.e., the worst point), with a new vertex
point with a lower function value. This process is repeated until the
simplex region becomes sufficiently small. For a detailed treatment of
the Nelder Mead algorithm, see Ref. 22.

Initial conditions and initial parameter values. The nerve firing
rates, ni(0) � 0, i � S, I, L, are assumed to be zero initially so that the
total firing rate n(0) � N, which is the baseline firing rate at rest. The
initial condition for the mean arterial pressure p�(0) is calculated as a
mean of the experimental data over the first 10 s. During steady state,
there is no change in concentrations of norepinephrine and acetylcho-
line, dCnor/dt � dCach/dt � 0. Consequently, the differential equations
in Eq. 7 give Cnor(0) � Tsym(0) � (1 	 N/M)/(1 � �N/M), and Cach �
Tpar � N/M. Simulations start at the beginning of the cardiac cycle,
thus �(0) � 0.

Since the Nelder Mead algorithm is an iterative method, initial
guesses for the 16 parameters must be specified. Whenever possible,
we used the literature as a guidance for initial parameter values, From
Ref. 35 we get kS � kL � 2, kI � 1.5 (Hz/mmHg), and �S � 0.5, �I �
5, �L � 250 (s). Since the reaction rates and the history-weighting
parameter are not generally well known, we used �ach � �nor � 0.05
(s) and � � 1 (1/s). Sympathetic response is delayed �6–10 s, and,
hence, we used an initial value of �d � 7 (s). An initial value of � �
6 was chosen for the dampening factor in Eq. 6. To calculate the initial
values for the scaling factors MS and MP in the heart rate model (8),
we made the following assumptions. We assumed that, at t � 0,
d�/dt � 45 (beats/min), which is the intrinsic heart rate, H0 � 100
(beats/min), that Cnor � 0, and that Cach � 1. Substituting these
expressions into the heart rate Eq. 8 gives

MP �
H0 � 45

H0

(11)

Similarly, when d�/dt � Hmax (the maximal firing rate), Cnor � 1 and
Cach � 0. This implies that

MS �
Hmax � H0

H0

(12)

The maximum heart rate Hmax depends on age and is computed as
Hmax � 217 	 (0.85) � age. As discussed above, it should be

Fig. 3. The graphs show the afferent baroreceptor firing rate n as a function of
time (s). Each panel shows the overall firing rate n (top line), as well as the
three components ni (bottom three curves), corresponding to a short (nS),
intermediate (nI), and long time-scale (nL) response. In the bottom three curves,
a solid line marks the nS time scale response, a dark gray line marks the nI time
scale response, and a light gray line marks the nL time scale response. As in
Fig. 1, results are shown from a healthy young subject (A), a healthy elderly
subject (B), and a hypertensive elderly subject (C).
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emphasized that we optimized the parameters �S and �P (instead of MS

and MP). Initial values for �S and �P are computed from initial values
for MS and MP using Eq. 10. To calculate the initial value for the
baseline firing rate N, which is subject dependent, we calculate the
mean value of the first five heart rate data points for each individual
and denoted this mean value by d�/dt. Substituting this mean value
into the heart rate differential Eq. 8 we obtain

d�

dt
� H0�1 � MSCnor�0� � MPCach�0��

� H0�1 � MS� 1 � N/M

1 � �N/M
� � MP

N

M� (13)

where the maximum firing rate M � 120 (Hz). Using Eq. 13, it is
possible to solve for N to obtain an initial value for the baseline
sympathetic firing rate, which, in turn, is used to obtain an initial value
for the optimized parameter � used in Eq. 10. Finally, for the impulse
function, we used u0 � 1, tstart � 58, and tstop � 63 (s) as initial
values.

RESULTS

We have validated the model against 60 data sets, i.e., based
on the initial estimates for all parameters discussed above, we
used the Nelder Mead nonlinear optimization to minimize the
discrepancy between computed and measured values for heart
rate. This minimization was performed for each data set; as a
result, for each group of subjects, we had 20 values for each
parameter. Mean values and standard deviations are given in
Table 2. From the heart rate data alone, it is not easy to separate
the biological mechanisms controlling heart rate regulation,
such as parasympathetic withdrawal, sympathetic activation,
and sympathetic regulation by the vestibulo-sympathetic sys-
tem. However, from the results of our submodels to be dis-
cussed in this section, these mechanisms are readily identified.
Figure 2 shows typical blood pressures (input to the model) for
a healthy young (A), healthy elderly (B), and hypertensive
elderly (C) subject. Graphs show measured pulsatile (solid
lines) and mean (gray lines) blood pressure as a function of
time. The mean blood pressure is computed as described in Eq.
2. The subject stands up at t � 60 (s), which is marked by a
dotted vertical line. Shortly after standing, blood is pooled in

Table 3. Areas of the hysteresis curves shown in Figure 4

Study Groups Area Slope

Healthy young 689�449 2.59�0.82
Healthy elderly 56�47 1.69�0.88
Hypertensive elderly 178�160 1.20�0.65
P values

Young vs. healthy elderly 0.000* 0.007*
Young vs. hypertensive elderly 0.000* 0.000*
Healthy elderly vs. hypertensive elderly 0.006* 0.057†

P values are shown comparing the three groups of subjects: healthy young,
healthy elderly, and hypertensive elderly. *Significant difference between the
two groups (P 
 0.05); †marginal differences (P 
 0.1).

Fig. 4. The graphs show afferent baroreflex firing rate n as a function of mean
blood pressure (pbar). Results are shown from a healthy young subject (A),
healthy elderly subject (B), and hypertensive elderly subject (C). Solid lines
through the hysteresis loops show the sixth-degree polynomial used to calcu-
late the area of the hysteresis loops. Dashed lines through the hysteresis curves
are used to determine the overall slopes of the hysteresis curves. Average
values for areas and slopes are given in Table 3.
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the legs, and, as a result, blood pressure (systolic, diastolic, and
mean value) drops. Blood pressure regulation restores blood
pressure �20 (s) after standing. It is noted that the blood
pressure is significantly higher for the hypertensive subject
(Fig. 2C) than for the healthy subjects (A and B).

Figure 3 shows the baroreceptor firing rate modeled as
described in Eq. 1. Note that the change in firing rate dynamics
is greater in the young subject (A) than in the elderly subjects
(B and C), and that the total firing rate is reduced for the
hypertensive subject (compare A and B with C). Furthermore,
it should be noted that the short-term response is almost
negligible for the elderly subjects (B and C) compared with the
young subject.

Figure 4 shows the baroreceptor nerve firing rate computed
from Eq. 1 as a function of mean blood pressure. For the young
subject (A), these graphs clearly show hysteresis effects, where
the baroreceptors firing rate takes the lower path when the
pressure is decreasing and the upper path when the pressure is
increasing. For the healthy (B) and hypertensive (C) elderly
subjects, the hysteresis curves shift toward higher pressures (in
particular for the hypertensive subject), and the areas enclosed
by the hysteresis curves are diminished, particularly for the
healthy elderly people. The areas of the hysteresis curves are
given in Table 3. These areas are computed by fitting a
sixth-order polynomial to the hysteresis curves and then by
integrating between the resulting polynomial functions. Figure
4 also shows the hysteresis curves, the fitted polynomials, and
a slope. The slope is computed by placing a linear curve
between the top and bottom of the hysteresis curve. The top
point marks where pressure is recovered after standing, and the
bottom point is placed at the minimum value for both pressure
and area.

We used ANOVA analysis to compare the areas of the
hysteresis curves among the three groups (see Table 3). The
hysteresis area was largest for the young subjects [healthy
young vs. healthy elderly (P 
 0.000001), healthy young vs.
hypertensive elderly (P 
 0.0002), and healthy elderly vs.
hypertensive elderly (P 
 0.006)]. Baroreflex sensitivity is
often assessed as linear fit between heart rate and blood
pressure (44). This is similar to the slopes shown in Fig. 4,
which were different between healthy young and healthy el-
derly (P 
 0.006), and between healthy young and hyperten-
sive elderly (P 
 0.00001), while the difference was borderline
between the groups of healthy elderly and hypertensive elderly
people (P � 0.057). In addition, for some hypertensive elderly
subjects, the hysteresis curve is open (Fig. 4C), indicating that
baroreflex modulation does not return to the steady-state value
during the first minute of standing.

The graphs of the parasympathetic and sympathetic re-
sponses are plotted as function of time (see Fig. 5) and as a
function of the baroreceptor nerve firing rate (see Fig. 6). Since
parasympathetic and sympathetic responses are affected by the
baroreceptor nerve activity, their dynamics and characteristics
are similar to the baroreceptor firing rate (see Fig. 3). Note in

Fig. 5. Graphs of the parasympathetic (Tp; solid trace) and sympathetic
responses (Ts; gray trace) as functions of time. Results are shown from a
healthy young subject (A), healthy elderly subject (B), and hypertensive elderly
subject (C). Note the significant reduction in dynamics of the parasympathetic,
the vestibulo-sympathetic, and the vascular sympathetic responses for the
elderly normotensive and hypertensive subjects.
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Fig. 5A, the sympathetic responses are bimodal. The first peak
represents the regulation of sympathetic nerve activity by the
vestibulo-sympathetic system, and the second peak represents
the baroreflex-mediated sympathetic outflow. The vestibulo-
sympathetic responses are indeed preceding the decline in
parasympathetic response due to the drop in the arterial blood
pressure (see also Fig. 7, which shows the heart rate is
increased before the drop in arterial blood pressure). In our
model, we accounted for the vestibulo-sympathetic reflex ac-
tivation by adding the impulse function in Eq. 6 to the sym-
pathetic relation in Eq. 5. The onset and duration of the impulse
function are treated as unknown parameters. The fact that our
model predicts that the impulse response (and thus the ves-
tibulo-sympathetic reflex) is activated before the onset of
pressure decrease is really remarkable and, in fact, agrees with
experimental studies (21, 38, 49, 53). It is noted that the
responses of these mechanisms are significantly reduced for
elderly subjects. The damping effect of the sympathetic re-
sponse by the parasympathetic responses is also visible (see
Fig. 5B), as the sympathetic response increases more slowly
than the parasympathetic increases. The linear relationships of
the parasympathetic and sympathetic responses to the barore-
ceptor firing rates are clearly illustrated in Fig. 6. As nerve
firing decreases, the sympathetic response increases and the
parasympathetic response decreases linearly.

A sample of heart rate model predictions compared with
experimental data for the three groups of subjects is shown in
Fig. 8. The graphs clearly show that we obtain excellent
agreement between model predictions and measured data. Our
mathematical model shows an increase in heart rate from the
vestibulo-sympathetic reflex (before the blood pressure starts
to decrease), a continuous heart rate increase in response to the
parasympathetic withdrawal, and a steep increase in heart rate
following the delayed sympathetic response. This is followed
by a steep return to a higher resting heart rate when blood
pressure is successfully raised and heart rate regulation is
completed. The cost function in Eq. 9 is a measure of how well
our model predicts the data (see Table 2). The largest discrep-
ancy between the model and the data (the largest values of J �
15.2 � 6.8) was found for the healthy young subjects, while,
for the elderly subjects, the model predicted the data very well
(J � 3.36 � 1.9 for healthy elderly subjects and J � 4.52 �
2.76 for hypertensive elderly subjects). The larger cost (error)
for the young subjects can be explained from the fact that heart
rate variability is larger for young subjects than for elderly
subjects (see Fig. 8, data for young subjects display more
oscillations than data for the elderly subjects).

The means of the estimated parameter values together with
their standard deviations are given in Table 2, these mean
values are close to the initial values calculated from physio-
logical observations, as described in the previous section. For
each group of parameters, we used ANOVA analysis to com-
pute the P values to compare the parameters among the three
groups of subjects. Parameters that were statistically significant
among the groups include the following: �d, which increased

Fig. 6. Graphs of the Tp (solid trace) and Ts (gray trace) plotted as functions
of the baroreceptor nerves firing rate. Results are shown from a healthy young
subject (A), healthy elderly subject (B), and hypertensive elderly subject (C).
The sympathetic and parasympathetic responses clearly show their linear
relations to the baroreceptor nerves firing rate.
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with age and even more with hypertension; kI, which was
significantly larger for the hypertensive subjects or for the
healthy young subjects than for the elderly subjects (both
healthy and hypertensive); kL, which was significantly larger
for hypertensive subjects than for the healthy young subjects;
�ach, which was significantly smaller for hypertensive subjects
than for the healthy young and elderly subjects; �, which was
significantly larger for the elderly subjects (both healthy and
hypertensive) than for the young subjects; and MP, which is
significantly different between healthy (young and elderly) and
hypertensive subjects.

Finally, we have tested the capability of our model to predict
the effects of age and hypertension. The effects of age were
simulated using input pressure for a young subject combined
with parameters predicted for a healthy elderly subject, and the
effects of hypertension were simulated using input pressure for
a healthy elderly subject combined with parameters for a
hypertensive elderly subject. Only parameters that differed
�50% between the two subjects (i.e., between the healthy
young and the healthy elderly subject; and between the healthy
elderly and the hypertensive elderly subject) were permuted.
Results of these parameter mutations showed (see Fig. 9) that
it is possible to use our model to predict effects of aging or
hypertension. This figure shows sympathetic (baroreflex and
vestibular mediated) and parasympathetic responses (left side),
hysteresis curves (firing rate vs. blood pressure, center), and
heart rate (right side). In all figures, results with permuted
parameters are depicted with gray dashed lines and computa-
tions with original pressure inputs [i.e., for the healthy (Fig.
9A) and hypertensive (B) elderly subjects] are depicted with
gray solid lines. The figure shows that simulations with per-
muted parameters (gray dashed lines) closely matched results
obtained with original parameters (gray solid lines). The main
difference between results with permuted parameters and those
from original simulations are the firing rate/blood pressure
responses. Because the blood pressure for the healthy young
(Fig. 9A) and the healthy elderly (B) subject was used as inputs,
the baroreflex firing rate curves were shifted to the left. How-
ever, besides this shift, they had the same shape as originally
computed. The limitation of this parameter permutation study
is that, if a young person is made elderly or if healthy elderly
subject is made hypertensive, then aging and hypertension
would also affect the input pressure. But our current model
does not account for the feedback that heart rate and neural
response have on blood pressure.

DISCUSSION, SUMMARY, AND SIGNIFICANCE

In this study, we developed a mathematical model that can
accurately predict heart rate dynamics during postural change
from sitting to standing (see Table 2). The model was success-
fully validated against 60 data sets separated into three groups:
healthy young people, healthy elderly people, and hypertensive
people. Arterial baroreflexes play a key role in maintaining
arterial pressure by regulating heart rate in the upright position.
Heart rate dynamics were modeled in response to baroreceptor
firing rate, sympathetic and parasympathetic responses, ves-
tibulo-sympathetic reflex, and concentrations of norepineph-
rine and acetylcholine, triggered by blood pressure decline
upon standing up. To predict heart rate dynamics, we first
estimated afferent baroreflex firing rate. One very important

Fig. 7. Blood pressure (solid trace) and HR (gray trace) as functions of time.
Results are shown from a healthy young subject (A), healthy elderly subject
(B), and hypertensive elderly subject (C). Note that the HR is increased before
the onset of the pressure decrease.
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result observed by graphing afferent baroreflex firing rate vs.
mean blood pressure is the difference of the hysteresis curves.
The area spanned by these curves is significantly different
among all three groups of subjects, with young people having
the largest area, hypertensive elderly people having intermedi-
ate areas, and healthy elderly people having very small areas.
It seems natural to conclude that a large area indicates high
baroreflex sensitivity and also that sensitivities to increases or
decreases of blood pressure may differ. Therefore, these area
measures may provide a better assessment of baroreflex sen-
sitivity than average slopes of the blood pressure/firing rate
relation because they take hysteresis into account. Our model
also shows that, in some hypertensive subjects, the hysteresis
curve is not closed, indicating that baroreflex modulation does
not return to baseline during the first minute of standing.
Another conclusion is that the dynamics of the afferent firing rate
change decreases with age and that the resting firing rate decreases
significantly for the hypertensive subjects. Again, these observa-
tions indicate reduced baroreflex sensitivity with aging and even
further reduced baroreflex function for hypertensive subjects.
These findings are important, as they may reflect combined effects
of aging and hypertension on baroreceptor firing.

Most previous models of heart rate dynamics focus on
modeling the neural response. Our model has shown that, if we
do not explicitly include both the sympathetic time delay and
account for vestibulo-sympathetic responses, we could not
predict dynamics of heart rate responses to upright posture. In
other words, heart rate responses to postural changes cannot be
explained by baroreflex regulation alone. To our knowledge,
this has not been shown in previous studies.

The fact that we explicitly account for latency of sympa-
thetic vasoconstriction allowed us to observe the impact of
aging on this delay. While the latency was not significantly
changed between healthy and hypertensive elderly people, we
observed a large difference between the young subjects and the
elderly subjects. This increase in delay could account for
inhibition of the sympathetic response with aging (46).

The vestibular and baroreflex-mediated sympathetic re-
flexes, which give rise to bimodal distribution, as well as the
parasympathetic baroreflex response are separated explicitly in
time, as shown in Fig. 5. The maximum or minimum responses
are given in Table 4. For all three responses (vestibulo-
sympathetic response, parasympathetic response, sympathetic
response), the dynamics are diminished with age (no difference
is detected between healthy and hypertensive elderly). How-
ever, comparing baroreflex sympathetic and vestibulo-sympa-
thetic responses within each group shows that, for healthy
young subjects (P � 0.487), the two responses cannot be
distinguished, whereas for the elderly subjects, the baroreflex
sympathetic response is diminished to a larger degree than the
vestibulo-sympathetic response (P � 0.05) for both healthy

Fig. 8. HR model predictions (gray trace) plotted against measured data (solid
trace). Results are shown from a healthy young subject (A), healthy elderly
subject (B), and hypertensive elderly subject (C). The dotted line indicates
where the blood pressure is starting to decrease; simultaneous HR and blood
pressure are shown in Fig. 7. On the figures, text and errors indicate contri-
butions from vestibular-sympathetic activation, parasympathetic withdrawal, and
sympathetic activation. Our HR model is able to reproduce measured data
extremely well for all three groups of subjects (the least squares errors are J �
9.93, J � 2.18, and J � 1.59 for A, B, and C, respectively). bpm, Beats per minute.
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and hypertensive elderly subjects. This latter observation is in
agreement with the study by Ray and Mohanan (37).

Another conclusion we can draw from our model is that
the parasympathetic inhibition of the sympathetic response
is increased with age. This follows from the observation that
the baseline sympathetic response is increased (although

this is not statistically significant) combined with an in-
crease of the dampening factor � (this is statistically signif-
icant, see Table 2), whereas the parasympathetic response is
diminished.

The predictive simulations shown in Fig. 9 could be used to
speculate that if responses of certain drugs are known to affect

Fig. 9. Parameter permutation. A: results of making a young (Y) subject elderly; B: results of making a healthy elderly (HE) subject hypertensive. As input, we
used blood pressures from the Y and HE subjects, respectively (see Fig. 2, A and B), and parameters followed those predicted for the HE (A) and hypertensive
elderly (HyE; B) subjects. For these simulations, we modified parameters if the difference between the Y (A) and HE (B) and the HE (A) and HyE (B) subjects
varied �50%. a: Ts and Tp. Dashed lines show results with permutated parameters, and solid lines show results from original computations for the HE (A) and
HyE (B) subjects, respectively (see also Fig. 5). b: firing rate n as a function of blood pressure. The solid lines show results with permuted parameters, and the
gray lines show results for HE (A) and HyE (B) subjects, respectively (see also Fig. 4). c: Computed HR using permuted and original parameters plotted against
HR data. Here, dashed and gray lines show results with permuted parameters, and solid and gray lines show computed results (using original parameters) for
the HE (A) and HyE (B) subjects (see also Fig. 8). These are plotted against HR data (dark solid and dashed lines). All simulations showed that the model-based
predicted responses closely matched the measured and model-based computed responses (using original parameters). The main difference is that, in these
simulations, the hysteresis loops are not shifted to the right with an adequate amount. This is mainly due to the fact that the input pressure stems from Y and
HE subjects, respectively.

Table 4. Relative dynamics of the neural and vestibular responses

Sympathetic
baseline
response
(t 
 60)

mean value

Vestibulo-sympathetic
reflex maximum

response

Sympathetic
baroreflex
maximum
response

Parasympathetic
baseline
response
(t 
 60)

mean value

Parasympathetic
baroreflex
minimum
response

Vestibular
reflex time for

maximum
response

Sympathetic
baroreflex

response time
for maximum

value

Parasympathetic
baroreflex

response time
for maximum

value

Healthy young 0.04�0.05 0.30�0.23 0.26�0.12 0.82�0.15 0.25�0.11 61.6�1.5 71.5�2.2 67.8�1.5
Healthy elderly 0.02�0.02 0.16�0.13 0.09�0.05 0.88�0.11 0.57�0.12 63.2�3.2 79.0�4.5 69.9�3.7
Hypertensive elderly 0.02�0.02 0.16�0.14 0.10�0.07 0.84�0.08 0.53�0.12 61.8�1.3 77.5�6.6 69.1�2.8
P values

Young vs. healthy elderly 0.055† 0.018* 0.000* 0.224 0.000* 0.056† 0.000* 0.028*
Young vs. hypertensive

elderly 0.140 0.020* 0.000* 0.542 0.00* 0.715 0.001* 0.082†
Healthy elderly vs.

hypertensive elderly 0.387 0.864 0.692 0.305 0.328 0.051† 0.404 0.411

The three groups are healthy young subjects, healthy elderly subjects, and hypertensive elderly subjects. Baseline and maximum/minimum values for
sympathetic barorelfex response, the vestibulo-sympathetic response, and the parasympathetic baroreflex response, and times at which the maximum/minimum
responses occurred are shown. *Significant difference between the two groups (P 
 0.05); †marginal differences (P 
 0.1).
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given combination of parameters then this model could poten-
tially be used to simulate the response to various treatments.

Limitations. It should be noted that only a few select param-
eters are significantly different between the three groups of
people, and it remains to be studied why it is only these
parameters that are affected and not all of them. One thing to
note is the large standard deviation that is observed within each
group. This is due to the fact that we see large variation in both
blood pressure and heart rate measurements within each group
of subjects. This study did not factor in the effect of gender,
which is known to significantly affect heart rate dynamics;
however, we did not have information about gender for the
analyzed data sets. Furthermore, the pulmonary bed and car-
diopulmonary interactions were not included in the model, and,
therefore, the contributions from the cardiopulmonary recep-
tors unloading to the initial and steady heart rate responses
were not accounted for.
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