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One slide about our lab

Czech Institute of Informatics, Robotics and Cybernetics

CTG analysis group (http://bio.felk.cvut.cz/ctg)

 Václav Chudáček, Jiří Spilka – automated CTG analysis, AI for FHR processing

 Michal Huptych, Miroslav Burša (FEE, CTU) – data collection systems, clinical inf.

 Petr Janků, Lukáš Hruban (FN Brno) – obstetricians at the University hospital in Brno

 Cyber-physical systems

 Intelligent systems

 Industrial informatics

 Robotics and machine perception

 Industrial production and automation

 Cognitive systems and neurosciences 

 Biomedical and assistive technologies

http://bio.felk.cvut.cz/ctg
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Context of the work
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Intro: Current state of evaluation

FHR is measured by US or fECG

Signs of hypoxia are sought for

Decision are made based on FHR 
and clinical data

Outcomes:

 Healthy babies

 Caesarean sections (20-50% in CZ)

 Pathological pH (1-3%) –> severe 
cases may result in neurological 
damage such as cerebral palsy etc.
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Intro: Automated analysis?

Machine representation of FHR is used
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Sources of motivation and 
frustration

“Wisdom comes from experience. Experience is often a result of lack of wisdom.”
- Terry Pratchett
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Automated analysis?

Ill defined inputs

 Databases in general – small, and very difficult to compare

 CTG segment used for evaluation – how long, how far, which stage

 Other inputs – e.g. clinical, technical, etc.

 Ill defined outputs

 What type of outcome do we use as an indicator of CTG/FHR class

 pH+BDecf (reason: Cerebral palsy – objective/statistical sound 
outcome measure): not very useful (very few cases)

 Apgar5 (reason: ? – current CPR techniques are able to get over 7 in 
5th minute in most cases): unreliable (subjective, not necessary related 
to hypoxia)

 pH alone (reason: it is easy): best (it does not relate to the long-term 
outcome, about 20% of measurements are wrong, no clear threshold)

 Expert evaluation (reason: that is how it is done in the hospital): -
(large variability, increased defensiveness in evaluation)

General
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Hard to assess real-life CTG evaluation

 Interventions due to multiple factors

 CS with normal objective outcome (how often was it necessary?)

 Low-risk pregnancies not monitored

 Bad outcomes often related to very low quality or missing recordings

Guidelines in intrapartum CTG not very good regarding:

 Clear explanation of reasoning

 Consistency, Repeatability

 Reasons for use (cf. history of the CTG introduction)

Increase of CS without impact on # of hypoxic babies

Existence of many related confounding factors

Variability among fetuses (e.g. male vs. female)

Clinical
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Majority of works done on static evaluation only

 One window (usually length < 40min, sleep episodes not considered)

 Often no prediction (evaluation of full data)

Limits of technical methods not advertised

 Ultrasound or STAN recordings – huge difference in terms of quality 

 Some methods need certain length of recording without noise

 Tocographic data – hardly usable

Lack of pathological cases

Preprocessing of the data is feature-dependant

Almost none of the other information available in the 
hospital is not considered

Technical
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Pieces of our work
(addressing in part the general problems above)
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Database 
CTU-UHB cardiotocograpic database
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Collaboration with
Ob&Gyn clinic in Brno

USG and STAN data

Only mature fetuses

First open-access CTG 
database

Common ground for 
algorithm comparison

Available at Physionet

CTU-UHB database

Chudáček et al. Open access intrapartum CTG database, BMC Pregnancy and Childbirth, 2014
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Subjective – expert evaluation

 Annotations acquired via CTG Annotator 

 Majority voting, Latent class model based on 9 experts

 Apgar score

Objective

 pH, pCO2, BDecf, BE

Mixture

 Majority, LCMs

Outcome measures for CTU-UHB
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FHR Signal processing
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Signal pre-processing

Gap & Artefact detection

 Gap removal (< 15s)

 Artefact rejection 

 Bernardes inspired thresholds 

 Adapted to 4Hz from beat to beat
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FIGO features 

Official obstetrics guidelines for CTG evaluation

Circular definition of Acceleration/Deceleration

Baseline detection based on histogram assessment
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Features

Morphological features (FIGO) (5)

Time-domain (6)

Freq.-domain (13) 

HRV (4)

Wavelet (15)

Nonlinear (12)

In total 55 features
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Classification
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Classification
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Classification (3)

Selected features

 Low spectral bands

 Decelerations

 Poincare plot SD2



Biomedical Data Processing  G  r  o  u  p

Results – obj. annotation (2)
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Comparison of results
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Shared database of path. cases

We need a common ground to compare

Getting the data is cumbersome and unrewarding job

But most hospitals now have electronic CTG records

There is no „perfect database“ yet

Experience shows that joining different approaches 
brings improvement across the board (kaggle.com)

Individual phase followed by joint effort phase

Could we build one together?
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Outcome measures 
Man-machine comparison
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Real-life CTG evaluation 
comparison vs. pH

Variability

Overall poor sensitivity

Sensitivity drops Step3 -> Step4

Why?

Clinical evaluation vs. pH

Annotation Objective Step 1 Step 2 Step 3 Step 4

SE SP SE SP SE SP SE SP

majority 

voting

pH ≤ 7.05 29 (12-54) 92 (88-95) 41 (20-65) 86 (81-90) 86 (45-99) 86 (79-90) 38 (18-63) 94 (91-97)

BD ≥ 12 30 (9-62) 92 (87-95) 50 (22-78) 86 (81-90) 50 (3-94) 83 (76-88) 22 (4-56) 93 (89-96)

Apgar < 7 50 (10-90) 91 (87-94) 50 (10-90) 85 (80-89) 100 (5-100) 83 (76-89) 75 (25-99) 93 (90-96)

hospital 

records

pH ≤ 7.05 41 (20-65) 94 (91-97) 41 (20-65) 94 (90-97) 40 (15-71) 93 (88-96) N/A N/A

BD ≥ 12 60 (29-85) 94 (91-97) 60 (29-85) 94 (90-96) 25 (1-75) 92 (87-95) N/A N/A

Apgar < 7 0  (0-53) 92 (88-95) 0  (0-53) 92 (87-95) 33 (2-86) 92 (87-95) N/A N/A

Hruban et al. Agreement on CTG intrapartum recordings between expert-obstetricians, J. of Eval. in Clinical Practice , 2015
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Real-life CTG evaluation 
comparison vs. pH

Variability

Overall poor sensitivity

Sensitivity drops Step3 -> Step4

Why?

Clinical evaluation vs. pH

Annotation Objective Step 1 Step 2 Step 3 Step 4

SE SP SE SP SE SP SE SP

majority 

voting

pH ≤ 7.05 29 (12-54) 92 (88-95) 41 (20-65) 86 (81-90) 86 (45-99) 86 (79-90) 38 (18-63) 94 (91-97)

BD ≥ 12 30 (9-62) 92 (87-95) 50 (22-78) 86 (81-90) 50 (3-94) 83 (76-88) 22 (4-56) 93 (89-96)

Apgar < 7 50 (10-90) 91 (87-94) 50 (10-90) 85 (80-89) 100 (5-100) 83 (76-89) 75 (25-99) 93 (90-96)

hospital 

records

pH ≤ 7.05 41 (20-65) 94 (91-97) 41 (20-65) 94 (90-97) 40 (15-71) 93 (88-96) N/A N/A

BD ≥ 12 60 (29-85) 94 (91-97) 60 (29-85) 94 (90-96) 25 (1-75) 92 (87-95) N/A N/A

Apgar < 7 0  (0-53) 92 (88-95) 0  (0-53) 92 (87-95) 33 (2-86) 92 (87-95) N/A N/A

Hruban et al. Agreement on CTG intrapartum recordings between expert-obstetricians, J. of Eval. in Clinical Practice , 2015



Biomedical Data Processing  G  r  o  u  p
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Latent class analysis

The latent class analysis (LCA) is used to estimate 
the true (unknown/hidden) evaluation of CTG and to 
infer weights of individual clinicians’ evaluation – the 
latent class model (LCM).

The LCM considers clinical evaluation as a finite 
mixture of multinomial distributions. 

Finite mixture models have fixed number of 
parameters and the standard method to estimate 
these parameters is expectation maximization (EM) 
algorithm.



Biomedical Data Processing  G  r  o  u  p

Latent class models

Spilka et al. Analysis of obstetricians’ decision making on CTG recordings, J. of Biomed. Informatics, 2014
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Case studies – different 
experiments / projects in 

the field of CTG processing
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“Case study ” 1:

Scattering transformation

(with 
Patrice Abry@ENSL, 

Stephane Mallat@ENS )
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Scattering transform

Introduced by S. Mallat
(http://www.di.ens.fr/data/scattering/)

http://www.di.ens.fr/data/scattering/
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Scattering transform (2)

Wavelet transform

 Complex mother wavelet

Dilated and translated wavelets

Wavelet coefficients 

First-order coefs: Local time averages of abs. value 
of wavelet coefs.
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Scattering Transform (3)

Second order -> beyond Wavelets

Wavelet transform of absolute values of wavelet coefs.

2nd order renormalized by the first

Nonlinear transform:

 Goes beyond wavelet

 Explores dependencies beyond correlation (or spectrum)
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Relation scattering - scaling

Relation between scattering and scaling

H – Hurst exponent

z(j1) – scaling exponents that may depart from H
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Fractal Dynamics of FHR

First order

Fractal behaviour:

 Time scales ranging from 4s < a = 2j < 60s
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Fractal Dynamics of FHR (2)

Second order for j1= 1, 2, 3.

Fractal behaviour:

 Time scales ranging from 4s < a = 2j < 60s
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Results

Discrimination power on SDB (HFME Lyon)

Performance outcome
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“Case study ” 2: 

Scaling properties of FHR

(with 
Patrice Abry@ENS)
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Temporal dynamics

Classical measures

 STV – scale of a = 3.75s (antepartum)

 LTV – scale of a = 60s (intrapartum)

Why to limit ourselves to these arbitrary intervals?



Biomedical Data Processing  G  r  o  u  p

Properties of FHR
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Continuous Wavelet Transform

Joint time and frequency energy content



Biomedical Data Processing  G  r  o  u  p

Fractal exponents

Oscilations -> wavelet coefs.

Variability is not characterized by actual value

Scale invariance is measured instead -> H

The H computed via wavelet spectrum provides

 Variability at all scales jointly (not just STV/LTV scale)

 Gives information of temporal dynamic of HF/LF ratio

In practice:
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Scale invariance in FHR
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Values of H per class
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Influence of decelerations
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Influence of decels. on H
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Conclusion

Hurst exponent

 Allows representation of time-scale properties of FHR by a single 
value

 Measures embraces the Temporal Dynamics as Fractal Variability

 Gathers time and spectral variabilities of the FHR in one feature

 Describes temporal dynamics across range of scales rather than 
for specific scales

 Simplifies the FHR analysis (in contrast to e.g. FIGO)

Behaves consistently irrespective to decelerations
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“Case study ” 3: 

Mobile CTG

(with Siemens A.G. Austria)
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General schema of mCTG
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Phonography signal processing
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“Case study ” 4: 

Latent class model

(by Jiří Spilka@CTU)
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Motivation
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Results on pH
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Latent class model
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Results on pH with LCM
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“Case study ” 5: 

OB information system –
The Delivery Book

(by Michal Huptych@CTU)
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Electronic delivery book

 The application has been deployed as pilot version.
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Domain model in obstetrics
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“Case study ” 6: 

DeBo database mining
Epidemiological study of pH

(with 
Ibrahim Abou Khashbah@CIIRC)
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12 878 patients from FN Brno

99 pH < 7.05, 231 pH <7.1

107 features
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“Case study ” 7: 

CTG Trainer App for
Android and web

(with 
Petr Stuchlik@PPF)
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(c) CIIRC, Czech Technical University in Prague

Clinical practice CTG Trainer
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“Case study ” 8: 

Clustering of FHR using 
SAX

(with 
Helen Drosou@TEI of Athens)
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Can we get by without those 
anoying features?

SAX – symbolic approximation

Based on piecewise agregate
approximation

Simple k-means algorithm is 
used for clustering

Preliminary results very 
promising given there are no 
“classical” features involved
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“Case study ” 9: 

Embedding & graph of graphs

(with 
Patrice Abry@ENS, 

Ronen Talmon@Technion )
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“Case study ” 10: 

New biochemical markers

(with Laboratory of Molecular
Diagnostics FN Brno)
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New markers

 mRNA

 Messenger RNA (mRNA) is a large family of RNA molecules that 
convey genetic information from DNA to the ribosome, where they 
specify the amino acid sequence of the protein products of gene 
expression. 

 miRNA

 A microRNA (abbreviated miRNA) is a small non-coding 
RNA molecule (containing about 22 nucleotides) found in plants, 
animals, and some viruses, which functions in RNA silencing and 
post-transcriptional regulation of gene expression

 The human genome may encode over 1000 miRNAs, which are 
abundant in many mammalian cell types and appear to target about 
60% of the genes of humans and other mammals.

http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Genetic_information
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Ribosome
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Non-coding_RNA
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/RNA_silencing
http://en.wikipedia.org/wiki/Regulation_of_gene_expression
http://en.wikipedia.org/wiki/Human_genome


Biomedical Data Processing  G  r  o  u  p



Biomedical Data Processing  G  r  o  u  p

Acknowledgments

Lenka Lhotská (CTU PhD supervisor)

Patrice Abry (ENS post-doc supervisor)

Jiří Spilka – main coinvestigator

Michal Huptych – delivery book
developer

Miroslav Burša – database guy

Lukáš Zach, Petr Stuchlík –
BSc./MSc. students, programmers

Petr Janků

 Chief obstetrician in FH Brno

 IGA grant with Faculty Hospital in 
Brno

Lukáš Hruban, Martin Huser

 Part of the IGA team in FH Brno

Michal Koucký

 Obstetrician, 1st  Medical Faculty
Charles University in Prague.

 First contact with the topic (2008)



Biomedical Data Processing  G  r  o  u  p

Thank you for your attention!
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Variability & HF/LF 
features united

Scaling properties of FHR
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Temporal dynamics

Classical measures

 STV – scale of a = 3.75s (antepartum)

 LTV – scale of a = 60s (intrapartum)

Why to limit ourselves to these arbitrary intervals?
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Continuous Wavelet Transform

Joint time and frequency energy content
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Fractal exponents

Oscilations -> wavelet coefs.

Variability is not characterized by actual value

Scale invariance is measured instead -> H

The H computed via wavelet spectrum provides

 Variability at all scales jointly (not just STV/LTV scale)

 Gives information of temporal dynamic of HF/LF ratio

In practice:
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Scale invariance in FHR
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Values of H per class
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Influence of decelerations
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Influence of decels. on H
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Conclusion

Hurst exponent

 Allows representation of time-scale properties of FHR by a single 
value

 Measures embraces the Temporal Dynamics as Fractal Variability

 Gathers time and spectral variabilities of the FHR in one feature

 Describes temporal dynamics across range of scales rather than 
for specific scales

 Simplifies the FHR analysis (in contrast to e.g. FIGO)

Behaves consistently irrespective to decelerations
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HF/LF

HF and LF bands set-up taken from adults

No evidence proved the threshold to be universal

Could we use other thresholds?

Is the band splitting relevant, then?

 H can be robust alternative to HF/LF
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ROC curves for band split and H
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Power law behaviour on classes
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CTG-centric: Related mainly to CTG

Correctly classified CTG (based on guidelines)

Detection of abnormal CTG => outlier detection

Classification into classes based on data => clustering

Baby-centric: Related to delivery as a whole

Always healthy baby => rate of CS close to 100%

“Happy” baby & mother

Good pH (or any other “objective”) value  

M.D. centric:

Decision based on objective rather than subjective indices 

Less legal trouble for obstetricians

What is the goal?
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CTG-centric: Related mainly to CTG

 Relation of CTG and outcome (Se is ~40%, Hruban2014 submitted)

Correctly classified CTG (based on guidelines)

 Guidelines are flawed and irreproducible (Campos2010)

 Guidelines are taking over common sense (Ugwumadu2014)

Detection of abnormal CTG => outlier detection

 In theory sound idea – yet about 30-50% of pathological cases 
misclassified (unpublished results on HFMEdb of about 3000 cases)

Classification into classes based on data => clustering

 Large db is needed with sufficient number of pathological cases and 
similar signal quality. Treatment of unbalance sets necessary to 
achieve results comparable to classification. (Janickova2014)

Problems with goals (1)
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Baby-centric: Related to delivery as a whole

Always healthy baby => rate of CS close to 100%?

 Not a reasonable thing, right? Not everybody can drive a tank…

“Happy” baby & mother

 Ideal, unfortunately very vague – how to define such a state? 1990s 
with current prenatal treatment/diagnostics? Is it possible?

Good pH (or any other “objective”) value  

 The objective marker is not very specific when used for delivery 
outcome assessment. Too many influences from other clinical factors 
(e.g. sex of the new-born).

M.D. centric

 Complementary goals to any above

Problems with goals (2)
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“Happy” baby is our goal

Related clinical questions

To monitor or not to monitor (intensively)?

To use SoA supplementary methods e.g. STAN?

To simplify guidelines e.g. along 4-rules/states by Schifrin?

To find relevant clinical features (and combinations) to the outcome?

Features from CTG – just one input to more complex system

 Features focused on are decelerations and variability – via scaling 
properties of the signal

 Composite outcome (Latent class modeling) is decided based on pH, 
Apgar, and subj. eval. of CTG

 Based on CTG class – different features will be used for further analysis

Our conclusion from the intro qs


