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One slide about our lab

Czech Institute of Informatics, Robotics and Cybernetics

CTG analysis group (http://bio.felk.cvut.cz/ctg)

 Václav Chudáček, Jiří Spilka – automated CTG analysis, AI for FHR processing

 Michal Huptych, Miroslav Burša (FEE, CTU) – data collection systems, clinical inf.

 Petr Janků, Lukáš Hruban (FN Brno) – obstetricians at the University hospital in Brno

 Cyber-physical systems

 Intelligent systems

 Industrial informatics

 Robotics and machine perception

 Industrial production and automation

 Cognitive systems and neurosciences 

 Biomedical and assistive technologies

http://bio.felk.cvut.cz/ctg
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Context of the work
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Intro: Current state of evaluation

FHR is measured by US or fECG

Signs of hypoxia are sought for

Decision are made based on FHR 
and clinical data

Outcomes:

 Healthy babies

 Caesarean sections (20-50% in CZ)

 Pathological pH (1-3%) –> severe 
cases may result in neurological 
damage such as cerebral palsy etc.
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Intro: Automated analysis?

Machine representation of FHR is used
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Sources of motivation and 
frustration

“Wisdom comes from experience. Experience is often a result of lack of wisdom.”
- Terry Pratchett
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Automated analysis?

Ill defined inputs

 Databases in general – small, and very difficult to compare

 CTG segment used for evaluation – how long, how far, which stage

 Other inputs – e.g. clinical, technical, etc.

 Ill defined outputs

 What type of outcome do we use as an indicator of CTG/FHR class

 pH+BDecf (reason: Cerebral palsy – objective/statistical sound 
outcome measure): not very useful (very few cases)

 Apgar5 (reason: ? – current CPR techniques are able to get over 7 in 
5th minute in most cases): unreliable (subjective, not necessary related 
to hypoxia)

 pH alone (reason: it is easy): best (it does not relate to the long-term 
outcome, about 20% of measurements are wrong, no clear threshold)

 Expert evaluation (reason: that is how it is done in the hospital): -
(large variability, increased defensiveness in evaluation)

General
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Hard to assess real-life CTG evaluation

 Interventions due to multiple factors

 CS with normal objective outcome (how often was it necessary?)

 Low-risk pregnancies not monitored

 Bad outcomes often related to very low quality or missing recordings

Guidelines in intrapartum CTG not very good regarding:

 Clear explanation of reasoning

 Consistency, Repeatability

 Reasons for use (cf. history of the CTG introduction)

Increase of CS without impact on # of hypoxic babies

Existence of many related confounding factors

Variability among fetuses (e.g. male vs. female)

Clinical
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Majority of works done on static evaluation only

 One window (usually length < 40min, sleep episodes not considered)

 Often no prediction (evaluation of full data)

Limits of technical methods not advertised

 Ultrasound or STAN recordings – huge difference in terms of quality 

 Some methods need certain length of recording without noise

 Tocographic data – hardly usable

Lack of pathological cases

Preprocessing of the data is feature-dependant

Almost none of the other information available in the 
hospital is not considered

Technical
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Pieces of our work
(addressing in part the general problems above)
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Database 
CTU-UHB cardiotocograpic database
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Collaboration with
Ob&Gyn clinic in Brno

USG and STAN data

Only mature fetuses

First open-access CTG 
database

Common ground for 
algorithm comparison

Available at Physionet

CTU-UHB database

Chudáček et al. Open access intrapartum CTG database, BMC Pregnancy and Childbirth, 2014
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Subjective – expert evaluation

 Annotations acquired via CTG Annotator 

 Majority voting, Latent class model based on 9 experts

 Apgar score

Objective

 pH, pCO2, BDecf, BE

Mixture

 Majority, LCMs

Outcome measures for CTU-UHB
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FHR Signal processing
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Signal pre-processing

Gap & Artefact detection

 Gap removal (< 15s)

 Artefact rejection 

 Bernardes inspired thresholds 

 Adapted to 4Hz from beat to beat
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FIGO features 

Official obstetrics guidelines for CTG evaluation

Circular definition of Acceleration/Deceleration

Baseline detection based on histogram assessment
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Features

Morphological features (FIGO) (5)

Time-domain (6)

Freq.-domain (13) 

HRV (4)

Wavelet (15)

Nonlinear (12)

In total 55 features
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Classification
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Classification
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Classification (3)

Selected features

 Low spectral bands

 Decelerations

 Poincare plot SD2



Biomedical Data Processing  G  r  o  u  p

Results – obj. annotation (2)
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Comparison of results
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Shared database of path. cases

We need a common ground to compare

Getting the data is cumbersome and unrewarding job

But most hospitals now have electronic CTG records

There is no „perfect database“ yet

Experience shows that joining different approaches 
brings improvement across the board (kaggle.com)

Individual phase followed by joint effort phase

Could we build one together?
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Outcome measures 
Man-machine comparison
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Real-life CTG evaluation 
comparison vs. pH

Variability

Overall poor sensitivity

Sensitivity drops Step3 -> Step4

Why?

Clinical evaluation vs. pH

Annotation Objective Step 1 Step 2 Step 3 Step 4

SE SP SE SP SE SP SE SP

majority 

voting

pH ≤ 7.05 29 (12-54) 92 (88-95) 41 (20-65) 86 (81-90) 86 (45-99) 86 (79-90) 38 (18-63) 94 (91-97)

BD ≥ 12 30 (9-62) 92 (87-95) 50 (22-78) 86 (81-90) 50 (3-94) 83 (76-88) 22 (4-56) 93 (89-96)

Apgar < 7 50 (10-90) 91 (87-94) 50 (10-90) 85 (80-89) 100 (5-100) 83 (76-89) 75 (25-99) 93 (90-96)

hospital 

records

pH ≤ 7.05 41 (20-65) 94 (91-97) 41 (20-65) 94 (90-97) 40 (15-71) 93 (88-96) N/A N/A

BD ≥ 12 60 (29-85) 94 (91-97) 60 (29-85) 94 (90-96) 25 (1-75) 92 (87-95) N/A N/A

Apgar < 7 0  (0-53) 92 (88-95) 0  (0-53) 92 (87-95) 33 (2-86) 92 (87-95) N/A N/A

Hruban et al. Agreement on CTG intrapartum recordings between expert-obstetricians, J. of Eval. in Clinical Practice , 2015
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Latent class analysis

The latent class analysis (LCA) is used to estimate 
the true (unknown/hidden) evaluation of CTG and to 
infer weights of individual clinicians’ evaluation – the 
latent class model (LCM).

The LCM considers clinical evaluation as a finite 
mixture of multinomial distributions. 

Finite mixture models have fixed number of 
parameters and the standard method to estimate 
these parameters is expectation maximization (EM) 
algorithm.
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Latent class models

Spilka et al. Analysis of obstetricians’ decision making on CTG recordings, J. of Biomed. Informatics, 2014
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Case studies – different 
experiments / projects in 

the field of CTG processing
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“Case study ” 1:

Scattering transformation

(with 
Patrice Abry@ENSL, 

Stephane Mallat@ENS )
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Scattering transform

Introduced by S. Mallat
(http://www.di.ens.fr/data/scattering/)

http://www.di.ens.fr/data/scattering/
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Scattering transform (2)

Wavelet transform

 Complex mother wavelet

Dilated and translated wavelets

Wavelet coefficients 

First-order coefs: Local time averages of abs. value 
of wavelet coefs.
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Scattering Transform (3)

Second order -> beyond Wavelets

Wavelet transform of absolute values of wavelet coefs.

2nd order renormalized by the first

Nonlinear transform:

 Goes beyond wavelet

 Explores dependencies beyond correlation (or spectrum)
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Relation scattering - scaling

Relation between scattering and scaling

H – Hurst exponent

z(j1) – scaling exponents that may depart from H
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Fractal Dynamics of FHR

First order

Fractal behaviour:

 Time scales ranging from 4s < a = 2j < 60s
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Fractal Dynamics of FHR (2)

Second order for j1= 1, 2, 3.

Fractal behaviour:

 Time scales ranging from 4s < a = 2j < 60s
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Results

Discrimination power on SDB (HFME Lyon)

Performance outcome
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“Case study ” 2: 

Scaling properties of FHR

(with 
Patrice Abry@ENS)
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Temporal dynamics

Classical measures

 STV – scale of a = 3.75s (antepartum)

 LTV – scale of a = 60s (intrapartum)

Why to limit ourselves to these arbitrary intervals?
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Properties of FHR
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Continuous Wavelet Transform

Joint time and frequency energy content
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Fractal exponents

Oscilations -> wavelet coefs.

Variability is not characterized by actual value

Scale invariance is measured instead -> H

The H computed via wavelet spectrum provides

 Variability at all scales jointly (not just STV/LTV scale)

 Gives information of temporal dynamic of HF/LF ratio

In practice:
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Scale invariance in FHR
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Values of H per class
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Influence of decelerations
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Influence of decels. on H
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Conclusion

Hurst exponent

 Allows representation of time-scale properties of FHR by a single 
value

 Measures embraces the Temporal Dynamics as Fractal Variability

 Gathers time and spectral variabilities of the FHR in one feature

 Describes temporal dynamics across range of scales rather than 
for specific scales

 Simplifies the FHR analysis (in contrast to e.g. FIGO)

Behaves consistently irrespective to decelerations
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“Case study ” 3: 

Mobile CTG

(with Siemens A.G. Austria)
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General schema of mCTG
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Phonography signal processing
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“Case study ” 4: 

Latent class model

(by Jiří Spilka@CTU)
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Motivation
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Results on pH
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Latent class model
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Results on pH with LCM
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“Case study ” 5: 

OB information system –
The Delivery Book

(by Michal Huptych@CTU)
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Electronic delivery book

 The application has been deployed as pilot version.
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Domain model in obstetrics
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“Case study ” 6: 

DeBo database mining
Epidemiological study of pH

(with 
Ibrahim Abou Khashbah@CIIRC)
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12 878 patients from FN Brno

99 pH < 7.05, 231 pH <7.1

107 features
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“Case study ” 7: 

CTG Trainer App for
Android and web

(with 
Petr Stuchlik@PPF)
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(c) CIIRC, Czech Technical University in Prague

Clinical practice CTG Trainer
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“Case study ” 8: 

Clustering of FHR using 
SAX

(with 
Helen Drosou@TEI of Athens)



Biomedical Data Processing  G  r  o  u  p

0 50 100 150 200 250 300

80

90

100

110

120

130

140

150

160

170

180

Část aproximovaného signálu

Čas [s]

T
F

 [
te

p
y
/m

in
]

d d d d d d e e e e f f f f f f e e e e e e c d d d e e f f f f f f f f f

a b c d e f g h i
0

0.5

1

1.5

2
x 10

4

Znaky

Č
e
tn

o
s
t 

z
n
a
k
ů

Četnost znaků v normálních signálech

a b c d e f g h i
0

500

1000

1500

Znaky

Č
e
tn

o
s
t 

z
n
a
k
ů

Četnost znaků v patologických signálech

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

0

0.2
Normální signály - modrá, Patologické signály - červená

První složka PCA

D
ru

h
á
 s

lo
ž
k
a
 P

C
A

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

0

0.2
Vytvořené shluky

První složka PCA

D
ru

h
á
 s

lo
ž
k
a
 P

C
A

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

0

0.2
Shluky vyhodnocené jako normální - modrá, patologické - červená

První složka PCA

D
ru

h
á
 s

lo
ž
k
a
 P

C
A

ClassN ClassP
Normal 361 147
Pathological 16 28

Can we get by without those 
anoying features?

SAX – symbolic approximation

Based on piecewise agregate
approximation

Simple k-means algorithm is 
used for clustering

Preliminary results very 
promising given there are no 
“classical” features involved
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“Case study ” 9: 

Embedding & graph of graphs

(with 
Patrice Abry@ENS, 

Ronen Talmon@Technion )
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“Case study ” 10: 

New biochemical markers

(with Laboratory of Molecular
Diagnostics FN Brno)
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New markers

 mRNA

 Messenger RNA (mRNA) is a large family of RNA molecules that 
convey genetic information from DNA to the ribosome, where they 
specify the amino acid sequence of the protein products of gene 
expression. 

 miRNA

 A microRNA (abbreviated miRNA) is a small non-coding 
RNA molecule (containing about 22 nucleotides) found in plants, 
animals, and some viruses, which functions in RNA silencing and 
post-transcriptional regulation of gene expression

 The human genome may encode over 1000 miRNAs, which are 
abundant in many mammalian cell types and appear to target about 
60% of the genes of humans and other mammals.

http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Genetic_information
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Ribosome
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Non-coding_RNA
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/RNA_silencing
http://en.wikipedia.org/wiki/Regulation_of_gene_expression
http://en.wikipedia.org/wiki/Human_genome
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Thank you for your attention!
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Variability & HF/LF 
features united

Scaling properties of FHR
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Temporal dynamics

Classical measures

 STV – scale of a = 3.75s (antepartum)

 LTV – scale of a = 60s (intrapartum)

Why to limit ourselves to these arbitrary intervals?
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Continuous Wavelet Transform

Joint time and frequency energy content
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Fractal exponents

Oscilations -> wavelet coefs.

Variability is not characterized by actual value

Scale invariance is measured instead -> H

The H computed via wavelet spectrum provides

 Variability at all scales jointly (not just STV/LTV scale)

 Gives information of temporal dynamic of HF/LF ratio

In practice:
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Scale invariance in FHR
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Values of H per class



Biomedical Data Processing  G  r  o  u  p

Influence of decelerations
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Influence of decels. on H
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Conclusion

Hurst exponent

 Allows representation of time-scale properties of FHR by a single 
value

 Measures embraces the Temporal Dynamics as Fractal Variability

 Gathers time and spectral variabilities of the FHR in one feature

 Describes temporal dynamics across range of scales rather than 
for specific scales

 Simplifies the FHR analysis (in contrast to e.g. FIGO)

Behaves consistently irrespective to decelerations
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HF/LF

HF and LF bands set-up taken from adults

No evidence proved the threshold to be universal

Could we use other thresholds?

Is the band splitting relevant, then?

 H can be robust alternative to HF/LF
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ROC curves for band split and H
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Power law behaviour on classes
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CTG-centric: Related mainly to CTG

Correctly classified CTG (based on guidelines)

Detection of abnormal CTG => outlier detection

Classification into classes based on data => clustering

Baby-centric: Related to delivery as a whole

Always healthy baby => rate of CS close to 100%

“Happy” baby & mother

Good pH (or any other “objective”) value  

M.D. centric:

Decision based on objective rather than subjective indices 

Less legal trouble for obstetricians

What is the goal?
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CTG-centric: Related mainly to CTG

 Relation of CTG and outcome (Se is ~40%, Hruban2014 submitted)

Correctly classified CTG (based on guidelines)

 Guidelines are flawed and irreproducible (Campos2010)

 Guidelines are taking over common sense (Ugwumadu2014)

Detection of abnormal CTG => outlier detection

 In theory sound idea – yet about 30-50% of pathological cases 
misclassified (unpublished results on HFMEdb of about 3000 cases)

Classification into classes based on data => clustering

 Large db is needed with sufficient number of pathological cases and 
similar signal quality. Treatment of unbalance sets necessary to 
achieve results comparable to classification. (Janickova2014)

Problems with goals (1)
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Baby-centric: Related to delivery as a whole

Always healthy baby => rate of CS close to 100%?

 Not a reasonable thing, right? Not everybody can drive a tank…

“Happy” baby & mother

 Ideal, unfortunately very vague – how to define such a state? 1990s 
with current prenatal treatment/diagnostics? Is it possible?

Good pH (or any other “objective”) value  

 The objective marker is not very specific when used for delivery 
outcome assessment. Too many influences from other clinical factors 
(e.g. sex of the new-born).

M.D. centric

 Complementary goals to any above

Problems with goals (2)



Biomedical Data Processing  G  r  o  u  p

“Happy” baby is our goal

Related clinical questions

To monitor or not to monitor (intensively)?

To use SoA supplementary methods e.g. STAN?

To simplify guidelines e.g. along 4-rules/states by Schifrin?

To find relevant clinical features (and combinations) to the outcome?

Features from CTG – just one input to more complex system

 Features focused on are decelerations and variability – via scaling 
properties of the signal

 Composite outcome (Latent class modeling) is decided based on pH, 
Apgar, and subj. eval. of CTG

 Based on CTG class – different features will be used for further analysis

Our conclusion from the intro qs


