PUI: Notes on Classical Planning

Daniel Fišer Danfis@danfis.cz

Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague

1. Representations

Definition 1. A STRIPS **planning task** Π is specified by a tuple $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$, where $\mathcal{F} = \{f_1, ..., f_n\}$ is a set of facts, $\mathcal{O} = \{o_1, ..., o_m\}$ is a set of operators, and c is a cost function mapping each operator to a non-negative real number. A **state** $s \subseteq \mathcal{F}$ is a set of facts, $s_{init} \subseteq \mathcal{F}$ is an **initial state** and $s_{goal} \subseteq \mathcal{F}$ is a **goal** specification. An **operator** o is a triple $o = \langle \operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o) \rangle$, where $\operatorname{pre}(o) \subseteq \mathcal{F}$ is a set of preconditions, and $\operatorname{add}(o) \subseteq \mathcal{F}$ and $\operatorname{del}(o) \subseteq \mathcal{F}$ are sets of add and delete effects, respectively. All operators are well-formed, i.e., $\operatorname{add}(o) \cap \operatorname{del}(o) = \emptyset$ and $\operatorname{pre}(o) \cap \operatorname{add}(o) = \emptyset$. An operator o is **applicable** in a state s if $\operatorname{pre}(o) \subseteq s$. The **resulting state** of applying an applicable operator o in a state s is the state $o[s] = (s \setminus \operatorname{del}(o)) \cup \operatorname{add}(o)$. A state s is a **goal state** iff $s_{goal} \subseteq s$.

A sequence of operators $\pi = \langle o_1, ..., o_n \rangle$ is applicable in a state s_0 if there are states $s_1, ..., s_n$ such that o_i is applicable in s_{i-1} and $s_i = o_i[s_{i-1}]$ for $1 \le i \le n$. The resulting state of this application is $\pi[s_0] = s_n$ and the cost of the plan is $c(\pi) = \sum_{o \in \pi} c(o)$. A sequence of operators π is called a **plan** iff $s_{goal} \subseteq \pi[s_{init}]$, and an **optimal plan** is a plan with the minimal cost over all plans.

Definition 2. An FDR planning task P is specified by a tuple $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$, where \mathcal{V} is a finite set of **variables**. Each variable $V \in \mathcal{V}$ has a finite domain D_V . A (partial) **state** s is a (partial) variable assignment over \mathcal{V} . We write vars(s) for the set of variables defined in s and s[V] for the value of V in s. The notation $s[V] = \bot$ means that $V \notin \text{vars}(s)$. A partial state s is **consistent** with a partial state s' if s[V] = s'[V] for all $V \in \text{vars}(s')$. We say that **atom** V = v is true in a (partial) state s iff s[V] = v. By c we denote a cost function mapping each operator to a non-negative real number. An **operator** $o \in \mathcal{O}$ is a pair $o = \langle \text{pre}(o), \text{eff}(o) \rangle$, where precondition pre(o) and effect eff(o) are partial assignments over \mathcal{V} . We require that V = v cannot be both a precondition and an effect. The (complete) state s_{init} is the **initial state** of the task and the partial state s_{qoal} describes its **goal**.

An operator o is **applicable** in a state s if s is consistent with pre(o). The **resulting** state of applying an applicable operator o in the state s is the state res(o, s) with

$$\operatorname{res}(o,s) = \left\{ \begin{array}{ll} \operatorname{eff}(o)[V] & \text{if } V \in \operatorname{vars}(\operatorname{eff}(o)), \\ s[V] & \text{otherwise.} \end{array} \right.$$

A sequence of operators $\pi = \langle o_1, ..., o_n \rangle$ is applicable in a state s_0 if there are states $s_1, ..., s_n$ such that o_i is applicable in s_{i-1} and $s_i = \text{res}(o_i, s_{i-1})$ for $1 \le i \le n$. The resulting state of this application is $\text{res}(\pi, s_0) = s_n$ and the cost of the plan is $c(\pi) = \sum_{o \in \pi} c(o)$.

Figure 1: Example problem.

A sequence of operators π is called a **plan** iff $res(\pi, s_{init})$ is consistent with s_{goal} , and an **optimal plan** is a plan with the minimal cost over all plans.

Exercises

Ex. 1.1 — Model the problem from Fig. 1 in STRIPS.

Ex. 1.2 — Model the problem from Fig. 1 in FDR.

2. h^{max} Heuristic

Definition 3. Given a STRIPS planning task $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$, $\Pi^+ = \langle \mathcal{F}, \mathcal{O}^+, s_{init}, s_{goal}, c \rangle$ denotes a **relaxed** STRIPS planning task, where $\mathcal{O}^+ = \{o_i^+ = \langle \operatorname{pre}(o_i), \operatorname{add}(o_i), \emptyset \rangle \mid o_i \in \mathcal{O}\}$.

Definition 4. Let $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ denote a STRIPS planning task. The heuristic function $h^{add}(s)$ gives an estimate of the distance from s to a node that satisfies the goal s_{goal} as $h^{add}(s) = \sum_{f \in s_{goal}} \Delta_0(s, f)$, where:

$$\Delta_0(s, o) = \Sigma_{f \in \text{pre}(o)} \Delta_0(s, f), \ \forall o \in \mathcal{O},$$

and

$$\Delta_0(s,f) = \begin{cases} 0 & \text{if } f \in s, \\ \infty & \text{if } \forall o \in \mathcal{O} : f \not\in \operatorname{add}(o), \\ \min\{c(o) + \Delta_0(s,o) \mid o \in \mathcal{O}, f \in \operatorname{add}(o)\} & \text{otherwise.} \end{cases}$$

Definition 5. Let $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, \mathbf{c} \rangle$ denote a STRIPS planning task. The heuristic function $h^{\max}(s)$ gives an estimate of the distance from s to a node that satisfies the goal s_{goal} as $h^{\max}(s) = \max_{f \in s_{goal}} \Delta_1(s, f)$, where:

$$\Delta_1(s, o) = \max_{f \in \text{pre}(o)} \Delta_1(s, f), \ \forall o \in \mathcal{O},$$

and

$$\Delta_{1}(s,f) = \begin{cases} 0 & \text{if } f \in s, \\ \infty & \text{if } \forall o \in \mathcal{O} : f \notin \text{add}(o), \\ \min\{c(o) + \Delta_{1}(s,o) \mid o \in \mathcal{O}, f \in \text{add}(o)\} & \text{otherwise.} \end{cases}$$

Algorithm 1: Algorithm for computing $h^{\max}(s)$. **Input:** $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{qoal}, c \rangle$, state s Output: $h^{max}(s)$ 1 for each $f \in s$ do $\Delta_1(s, f) \leftarrow 0$; 2 for each $f \in \mathcal{F} \setminus s$ do $\Delta_1(s, f) \leftarrow \infty$; 3 for each $o \in \mathcal{O}$ do $U(o) \leftarrow |\operatorname{pre}(o)|$; 4 $C \leftarrow \emptyset$; 5 while $s_{qoal} \not\subseteq C$ do $c \leftarrow \arg\min_{f \in \mathcal{F} \setminus C} \Delta_1(s, f);$ $C \leftarrow C \cup \{c\};$ 7 for each $o \in \mathcal{O}, c \in pre(o)$ do 8 $U(o) \leftarrow U(o) - 1$; 9 if U(o) = 0 then 10 for each $f \in add(o)$ do 11 $\Delta_1(s, f) \leftarrow \min\{\Delta_1(s, f), c(o) + \Delta_1(s, c)\};$ 12

17 $h^{\max}(s) = \max_{f \in s_{goal}} \Delta_1(s, f);$

end

end

end

Exercises

16 end

13

14 15

Ex. 2.1 — Modify Algorithm 1 to compute h^{add} instead of h^{max}.

Ex. 2.2 — Compute $h^{\max}(s_{init})$, $h^{add}(s_{init})$, $h^+(s_{init})$, and $h^*(s_{init})$ for the following problem $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$:

$$\mathcal{F} = \{a, b, c, d, e, f, g\}$$

$$O = \begin{cases} |pre| & |add| & |del| & |c|| \\ |o_1| & |a|| & |c|| & |a|| \\ |o_2| & |a|| & |c|| & |a|| & |a|| \\ |o_3| & |a|| & |a|| & |a|| & |a|| \\ |o_4| & |a|| & |a|| & |a|| & |a|| \\ |o_5| & |a|| & |g|| & |a|| & |a|| \\ |s_{init}| & = |a| & |a|| & |a|| & |a|| & |a|| \\ |s_{init}| & = |a| & |a|| & |a|| & |a|| & |a|| \\ |s_{init}| & = |a|| & |a|| & |a|| & |a|| & |a|| & |a|| & |a|| \\ |s_{init}| & = |a|| & |a|| \\ |s_{init}| & = |a|| & |$$

3. LM-Cut Heuristic

Definition 6. A disjunctive operator landmark $L \subseteq \mathcal{O}$ is a set of operators such that every plan contains at least one operator from L.

Definition 7. Let $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, \mathbf{c} \rangle$ denote a planning task, let Δ_1 denote the function from Definition 5 for Π , and let $\operatorname{supp}(o) = \operatorname{arg\,max}_{f \in \operatorname{pre}(o)} \Delta_1(f)$ denote a function mapping each operator to its **supporter**.

A justification graph G = (N, E) is a directed labeled multigraph with a set of nodes $N = \{n_f \mid f \in \mathcal{F}\}$ and a set of edges $E = \{(n_s, n_t, o) \mid o \in \mathcal{O}, s = \text{supp}(o), t \in \text{add}(o)\}$, where the triple (a, b, l) denotes an edge from a to b with the label l.

An **s-t-cut** $C(G, s, t) = (N^0, N^* \cup N^b)$ is a partitioning of nodes from the justification graph G = (N, E) such that N^* contains all nodes from which t can be reached with a zero-cost path, N^0 contains all nodes reachable from s without passing through any node from N^* , and $N^b = N \setminus (N^0 \cup N^*)$.

```
Algorithm 2: Algorithm for computing h^{lm-cut}(s).
```

```
Input: \Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{qoal}, c \rangle, state s
                    Output: h^{lm-cut}(s)
      1 h^{\text{lm-cut}}(s) \leftarrow 0;
     \mathbf{2} \ \Pi_1 = \langle \mathcal{F}' = \mathcal{F} \cup \{I, G\}, \mathcal{O}' = \mathcal{O} \cup \{o_{init}, o_{goal}\}, s'_{init} = \{I\}, s'_{goal} = \{G\}, c_1 \rangle, \text{ where } \mathbf{2} \ \mathbf{1} \
                           \operatorname{pre}(o_{init}) = \{I\}, \operatorname{add}(o_{init}) = s, \operatorname{del}(o_{init}) = \emptyset, \operatorname{pre}(o_{goal}) = s_{goal}, \operatorname{add}(o_{goal}) = \{G\},
                           del(o_{qoal}) = \emptyset, c_1(o_{init}) = 0, c_1(o_{qoal}) = 0, and c_1(o) = c(o) for all o \in \mathcal{O};
      i \leftarrow 1;
     4 while h^{\max}(\Pi_i, s'_{init}) \neq 0 do
                                           Construct a justification graph G_i from \Pi_i;
                                           Construct an s-t-cut C_i(G_i, n_I, n_G) = (N_i^0, N_i^{\star} \cup N_i^b);
      6
      7
                                           Create a landmark L_i as a set of labels of edges that cross the cut C_i, i.e., they
                                                 lead from N_i^0 to N_i^*;
                                           m_i \leftarrow \min_{o \in L_i} c_i(o);
                                           h^{lm-cut}(s) \leftarrow h^{lm-cut}(s) + m_i;
      9
                                          Set \Pi_{i+1} = \langle \mathcal{F}', \mathcal{O}', s'_{init}, s'_{qoal}, c_{i+1} \rangle, where c_{i+1}(o) = c_i(o) - m_i if o \in L_i, and
10
                                                  c_{i+1}(o) = c_i(o) otherwise;
                                         i \leftarrow i + 1;
11
12 end
```

Exercises

Ex. 3.1 — Modify Algorithm 1 to compute h^{max} and to find supporters from Definition 7 at the same time.

Ex. 3.2 — Compute
$$h^{lm-cut}(s_{init})$$
 for the following problem $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$: $\mathcal{F} = \{s, t, q_1, q_2, q_3\}$

$$\begin{array}{c|ccccc}
 & \text{pre} & \text{add} & \text{del} & c \\
\hline
o_1 & \{s\} & \{q_1, q_2\} & \emptyset & 1 \\
o_2 & \{s\} & \{q_1, q_3\} & \emptyset & 1 \\
o_3 & \{s\} & \{q_2, q_3\} & \emptyset & 1 \\
fin & \{q_1, q_2, q_3\} & \{t\} & \emptyset & 0
\end{array}$$

$$s_{init} = \{s\}, s_{qoal} = \{t\}$$

Ex. 3.3 — Compute $h^{\max}(s_{init})$, $h^{\lim\text{-cut}}(s_{init})$, $h^+(s_{init})$, and $h^*(s_{init})$ for the following problem $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{qoal}, c \rangle$:

$$\mathcal{F} = \{a, b, c, d, e, i, g\}$$

$$\begin{array}{c|c|c} & \text{pre} & \text{add} & \text{del} & c \\ \hline o_1 & \{i\} & \{a, b\} & \emptyset & 2 \\ o_2 & \{i\} & \{b, c\} & \emptyset & 3 \\ \mathcal{O} = & o_3 & \{a, c\} & \{d\} & \{c\} & 1 \\ o_4 & \{b, d\} & \{e\} & \{b\} & 3 \\ o_5 & \{a, c, e\} & \{g\} & \{c, d\} & 1 \\ o_6 & \{a\} & \{e\} & \{a, c\} & 5 \\ \end{array}$$

$$s_{init} = \{i\}, s_{goal} = \{g\}$$

Ex. 3.4 — Decide dominance for the following cases: $h^{max} \geq h^{add}$, $h^{max} \geq h^{lm-cut}$, $h^{max} \geq h^+$, $h^{lm-cut} \leq h^+$, $h^{lm-cut} \geq h^{max}$.

4. Merge And Shrink Heuristic

Definition 8. A transition system is a tuple $\mathcal{T} = \langle S, L, T, I, G \rangle$, where S is a finite set of states, L is a finite set of labels, each label has cost $c(l) \in \mathbb{R}_0^+$, $T \subseteq S \times L \times S$ is a transition relation, $I \subseteq S$ is a set of initial states, and $G \subseteq S$ is a set of goal states.

Definition 9. Given an FDR planning task $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$, $\mathcal{T}(P) = \langle S, L, T, I, G \rangle$ denote a **transition system of** P, where S is a set of states over \mathcal{V} , $L = \mathcal{O}$, $T = \{(s, o, t) \mid res(o, s) = t\}$, $I = \{s_{init}\}$, and $G = \{s \mid s \in S, s \text{ is consistent with } s_{goal}\}$.

Definition 10. Let $\mathcal{T}^1 = \langle S^1, L, T^1, I^1, G^1 \rangle$ and $\mathcal{T}^2 = \langle S^2, L, T^2, I^2, G^2 \rangle$ denote two transition systems with the same set of labels, and let $\alpha : S^1 \mapsto S^2$. We say that S^2 is an **abstraction of** S^1 with **abstraction function** α if for every $s \in I^1$ it holds that $\alpha(s) \in I^2$ and for every $s \in G^1$ it holds that $\alpha(s) \in G^2$ and for every $(s, l, t) \in T^1$ it holds that $(\alpha(s), l, \alpha(t)) \in T^2$.

Definition 11. Let P denote an FDR planning task, let \mathcal{A} denote an abstraction of a transition system $\mathcal{T}(P) = \langle S, L, T, I, G \rangle$ with the abstraction function α . The **abstraction heuristic** induced by \mathcal{A} and α is the function $h^{\mathcal{A},\alpha}(s) = h^{\star}(\mathcal{A},\alpha(s))$ for all $s \in S$.

Definition 12. Given two transition systems $\mathcal{T}^1 = \langle S^1, L, T^1, I^1, G^1 \rangle$ and $\mathcal{T}^2 = \langle S^2, L, T^2, I^2, G^2 \rangle$ with the same set of labels, the **synchronized product** $\mathcal{T}^1 \otimes \mathcal{T}^2 = \mathcal{T}$ is a transition system $\mathcal{T} = \langle S, L, T, I, G \rangle$, where $S = S^1 \times S^2$, $T = \{((s_1, s_2), l, (t_1, t_2)) \mid (s_1, l, s_2) \in T^1, (s_2, l, t_2) \in T^2\}$, $I = I^1 \times I^2$, and $G = G^1 \times G^2$.

Algorithm 3: Algorithm for computing merge-and-shrink.

```
Input: P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle
Output: Abstraction \mathcal{M}

1 \mathcal{A} \leftarrow \text{Set of (atomic) abstractions } (\alpha_i, \mathcal{T}_i) \text{ of } \mathcal{T}(P);
2 while |\mathcal{A}| > 1 do
3 |A_1 = (\alpha_1, \mathcal{T}_1), A_2 = (\alpha_2, \mathcal{T}_2) \leftarrow \text{Select two abstractions from } \mathcal{A};
4 |\text{Shrink } A_1 \text{ and/or } A_2 \text{ until they are "small enough"};
5 |\mathcal{A} \leftarrow (\mathcal{A} \setminus \{A_1, A_2\}) \cup (A_1 \otimes A_2) // \text{ Merge}
6 end
7 \mathcal{M} \leftarrow \text{The only element of } \mathcal{A};
```

Exercises

Ex. 4.1 — Compute the synchronized product of $\mathcal{T}^1 = \langle S^1, L, T^1, I^1, G^1 \rangle$ and $\mathcal{T}^2 = \langle S^2, L, T^2, I^2, G^2 \rangle$, where $L = \{a, b, c, d, e\}$, $S^1 = \{A, B, C, D\}$, $T^1 = \{(A, a, B), (B, b, C), (C, c, A), (A, d, A), (A, e, D)\}$, $I^1 = \{A, B\}$, $G^1 = \{A, C\}$, $S^2 = \{X, Y, Z\}$, $T^2 = \{(X, a, Y), (X, a, Z), (Y, b, Z), (Z, c, Y), (Z, d, Y), (Z, e, Z)\}$, $I^2 = \{X\}$, and $I^2 = \{X\}$.

Ex. 4.2 — Study merge and shrink strategies proposed by Helmert, Haslum, and Hoffmann (2007) and compute $h^{m\&s}(s_{init})$ for the problem in Fig. 1 (Ex. 1.2).

5. LP-Based Heuristics

Definition 13. Let $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ denote an FDR planning task. The **domain transition graph** for a variable $V \in \mathcal{V}$ is a tuple $\mathcal{A}_V = (N_V, L_V, T_V)$, where $N_V = \{n_v \mid v \in D_V\} \cup \{n_{\perp}\}$ is a set of nodes, $L_V = \{o \mid o \in \mathcal{O}, V \in \text{vars}(\text{pre}(o)) \cup \text{vars}(\text{eff}(o))\}$ is a set of labels, and $T_V \subseteq N_V \times L_V \times N_V$ is a set of transitions $T_V = \{(n_u, o, n_v) \mid o \in L_V, V \in \text{vars}(\text{eff}(o)), \text{pre}(o)[V] = u, \text{eff}(o)[V] = v\} \cup \{(n_v, o, n_v) \mid o \in L_V, V \not\in \text{vars}(\text{eff}(o)), \text{pre}(o)[V] = v\}.$

Definition 14. Let $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ denote an FDR planning task, $\mathcal{A}_V = (N_V, L_V, T_V)$ a domain transition graph for each variable $V \in \mathcal{V}$, and s a state reachable from s_{init} . Given the following linear program with real-valued variables x_o for each operator $o \in \mathcal{O}$:

$$\begin{split} & \text{minimize} & & \sum_{o \in \mathcal{O}} c(o) x_o \\ & \text{subject to} & & LB_{V,v} \leq \sum_{(v',o,v) \in T_V} x_o - \sum_{(v,o,v') \in T_V} x_o & \forall V \in \mathcal{V}, \forall v \in D_V, \end{split}$$

where

$$LB_{V,v} = \begin{cases} 0 & \text{if } V \in \text{vars}(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] = v, \\ 1 & \text{if } V \in \text{vars}(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] \neq v, \\ -1 & \text{if } (V \not\in \text{vars}(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] = v, \\ 0 & \text{if } (V \not\in \text{vars}(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] \neq v, \end{cases}$$

then the value of the flow heuristic $h^{\text{flow}}(s)$ for the state s is

$$\mathbf{h}^{\mathrm{flow}}(s) = \left\{ \begin{array}{cc} \left\lceil \sum_{o \in \mathcal{O}} c(o) x_o \right\rceil & \text{if the solution is feasible,} \\ \infty & \text{if the solution is not feasible.} \end{array} \right.$$

(Bonet, 2013; Bonet & van den Briel, 2014)

Definition 15. Let $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, \mathbf{c} \rangle$ denote an FDR planning task and s a state reachable from s_{init} . Given the following linear program with real-valued variables $P_{V,v}$ for each variable $V \in \mathcal{V}$ and each value $v \in D_V$, and real-valued variables M_V for each variable $V \in \mathcal{V}$:

$$\begin{split} \text{maximize} & & \sum_{V \in \mathcal{V}} P_{V,s_{init}[V]} \\ \text{subject to} & & P_{V,v} \leq M_V & \forall V \in \mathcal{V}, \forall v \in D_V \\ & & \sum_{V \in \mathcal{V}} maxpot(V,s_{goal}) \leq 0 \\ & & \sum_{V \in \text{vars}(\text{eff}(o))} (maxpot(V,\text{pre}(o)) - P_{V,\text{eff}(o)[V]}) \leq \mathbf{c}(o) & \forall o \in \mathcal{O}, \end{split}$$

where

$$maxpot(V, p) = \begin{cases} P_{V, p[V]} & \text{if } V \in vars(p), \\ M_V & \text{otherwise} \end{cases}$$

then the value of the **potential heuristic** $h^{pot}(s)$ for the state s is

$$\mathbf{h}^{\mathrm{pot}}(s) = \begin{cases} \sum_{V \in \mathcal{V}} P_{V,s[V]} & \text{if the solution is feasible,} \\ \infty & \text{if the solution is not feasible.} \end{cases}$$

(Pommerening, Helmert, Röger, & Seipp, 2015; Seipp, Pommerening, & Helmert, 2015)

Exercises

Ex. 5.1 — Compute the h^{flow} (s_{init}) and h^{pot} (s_{init}) for the following FDR planning task $P = \langle \mathcal{V}, \mathcal{O}, s_{init}, s_{goal}, \mathbf{c} \rangle$: $\mathcal{V} = \{A, B, C\},$ $D_A = \{D, E\}, D_B = \{F, G\}, D_C = \{H, J, K\},$

$$s_{init} = \{A = D, B = F, C = H\}, s_{goal} = \{A = D, C = K\}$$

$$\mathcal{O} = \{o_1, o_2, o_3, o_4, o_5\},\$$

$$o_1: A = D, C = H \mapsto A = E, C = J, c(o_1) = 2,$$

$$o_2: A = D \mapsto B = G, c(o_2) = 1,$$

$$o_3: B = G, C = J \mapsto C = K, c(o_3) = 1,$$

$$o_4: A = E \mapsto A = D, c(o_4) = 2,$$

$$o_5: C = H \mapsto C = J, c(o_5) = 5.$$

Ex. 5.2 — How can be flow heuristic improved with landmarks (e.g., from the LM-Cut heuristic)?

Ex. 5.3 — How can we modify objective of the LP for the potential heuristic so we still obtain admissible estimate for all reachable states?

6. Mutex Groups

Definition 16. Let $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$ denote a STRIPS planning task, and let $M \subseteq \mathcal{F}$ denote a set of facts. A **mutex group** $M \subseteq \mathcal{F}$ is a set of facts such that for every reachable state s it holds that $|M \cap s| \leq 1$. A mutex group that is not subset of any other mutex group is called a **maximal mutex group**.

Definition 17. (Fišer & Komenda, 2018) A **fact-alternating mutex group** (fam-group) $M \subseteq \mathcal{F}$ is a set of facts such that $|M \cap s_{init}| \leq 1$ and $|M \cap \operatorname{add}(o)| \leq |M \cap \operatorname{pre}(o) \cap \operatorname{del}(o)|$ for every operator $o \in \mathcal{O}$. A fam-group that is not subset of any other fam-group is called a **maximal fam-group**.

Proposition 18. Every fam-group is a mutex group.

```
Algorithm 4: Inference of fact-alternating mutex groups using ILP.
    Input: STRIPS planning task \Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{qoal}, c \rangle
    Output: A set of fam-groups \mathcal{M}
 1 Create ILP with a binary variable x_i \in \{0,1\} for every fact f_i \in \mathcal{F};
 2 Add constraint \sum_{f_i \in s_{init}} x_i \leq 1;
 3 For each operator o \in \mathcal{O} add constraint \sum_{f_i \in \text{add}(o)} x_i \leq \sum_{f_i \in \text{del}(o) \cap \text{pre}(o)} x_i;
 4 Set objective function of ILP to maximize \sum_{f_i \in \mathcal{F}} x_i;
 5 M \leftarrow \emptyset;
 6 Solve ILP and if a solution was found, save \{f_i \mid f_i \in \mathcal{F}, x_i = 1\} into M;
 7 while |M| \geq 1 do
         Add M to the output set \mathcal{M};
        Add constraint \sum_{f_i \notin M} x_i \geq 1;
 9
10
         Solve ILP and if a solution was found, save \{f_i \mid f_i \in \mathcal{F}, x_i = 1\} into M;
11
12 end
```

Theorem 19. Algorithm 4 is complete with respect to the maximal fam-groups.

Exercises

Ex. 6.1 — Translate the FDR planning task from Ex. 5.1 into STRIPS.

Ex. 6.2 — Translate the following STRIPS planning task into FDR: $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$: $\mathcal{F} = \{a, b, c, d, e, f\}$

		pre	add	del	c
$\mathcal{O} =$	$\overline{o_1}$	$\{a\}$	<i>{b}</i>	<i>{a}</i>	1
	o_2	$\{b\}$	$\{a\}$	$\{b\}$	1
	o_3	$\{b\}$	$\{c\}$	$\{b\}$	1
	o_4	$\{a,d\}$	$\{f\}$		1
	o_5	$\{c,d,f\}$	$\{e\}$	$\{d,f\}$	1
$s_{init} = \{b, d\}, s_{goal} = \{e\}$					
Try to guess mutay groups					

Try to guess mutex groups.

References

- Bonet, B. (2013). An admissible heuristic for SAS⁺ planning obtained from the state equation. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 2268–2274.
- Bonet, B., & Helmert, M. (2010). Strengthening landmark heuristics via hitting sets. In 19th European Conference on Artificial Intelligence, ECAI, pp. 329-334.
- Bonet, B., & van den Briel, M. (2014). Flow-based heuristics for optimal planning: Landmarks and merges. In Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling (ICAPS), pp. 47–55.
- Fišer, D., & Komenda, A. (2018). Fact-alternating mutex groups for classical planning. J. Artif. Intell. Res., 61, 475–521.
- Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What's the difference anyway?. In Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS).
- Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal sequential planning. In Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling, (ICAPS), pp. 176–183.
- Pommerening, F., Helmert, M., Röger, G., & Seipp, J. (2015). From non-negative to general operator cost partitioning. In Proceedings of the Twenty-Ninth Conference on Artificial Intelligence (AAAI), pp. 3335–3341.
- Seipp, J., Pommerening, F., & Helmert, M. (2015). New optimization functions for potential heuristics. In Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling (ICAPS), pp. 193–201.