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1. Representations

Definition 1. A STRIPS planning task II is specified by a tuple IT = (F, O, Sinit, Sgoai; ©),
where F = {f1,..., fn} is a set of facts, O = {o1,...,0n,} is a set of operators, and c is a
cost function mapping each operator to a non-negative real number. A state s C F is a set
of facts, sin;y € F is an initial state and s, C F is a goal specification. An operator
o is a triple o = (pre(o),add(o),del(o)), where pre(o) C F is a set of preconditions, and
add(o) C F and del(o) C F are sets of add and delete effects, respectively. All operators are
well-formed, i.e., add(o) Ndel(o) = §) and pre(o) Nadd(o) = 0. An operator o is applicable
in a state s if pre(o) C s. The resulting state of applying an applicable operator o in a
state s is the state o[s] = (s \ del(0)) Uadd(o). A state s is a goal state iff 54,4 C s.

A sequence of operators m = (01, ..., 0,) is applicable in a state sg if there are states
S1, ..., Sp, such that o; is applicable in s;_1 and s; = 0;[s;—1] for 1 < ¢ < n. The resulting
state of this application is 7[so] = s, and the cost of the plan is c(m) = > c.c(0). A
sequence of operators 7 is called a plan iff 54041 C 7[sini), and an optimal plan is a plan
with the minimal cost over all plans.

Definition 2. An FDR planning task P is specified by a tuple P = (V, O, Sinit, Sgoal; C),
where V is a finite set of variables. Each variable V € V has a finite domain Dy. A
(partial) state s is a (partial) variable assignement over V. We write vars(s) for the set
of variables defined in s and s[V] for the value of V in s. The notation s[V] = L means
that V & vars(s). A partial state s is consistent with a partial state s’ if s[V] = §'[V]
for all V' € vars(s’). We say that atom V = v is true in a (partial) state s iff s[V] = v.
By ¢ we denote a cost function mapping each operator to a non-negative real number. An
operator o € O is a pair o = (pre(0), eff(0)), where precondition pre(o) and effect eff(o)
are partial assignements over V. We require that V' = v cannot be both a precondition and
an effect. The (complete) state s;,;; is the initial state of the task and the partial state
Sgoal describes its goal.

An operator o is applicable in a state s if s is consistent with pre(o). The resulting
state of applying an applicabe operator o in the state s is the state res(o, s) with

[ eff(o)[V] if V € vars(eff(0)),
res(o, s) = { s[V] otherwise.

A sequence of operators m = (01, ..., 0,) is applicable in a state sg if there are states
$1, .-, Sn, such that o; is applicable in s;_1 and s; = res(o;, s;—1) for 1 < i < n. The resulting
state of this application is res(,sg) = s, and the cost of the plan is c¢(m) = > . c(0).



Figure 1: Example problem.

A sequence of operators 7 is called a plan iff res(m, sini;) is consistent with s40q, and an
optimal plan is a plan with the minimal cost over all plans.

Exercises
Ex. 1.1 — Model the problem from Fig. 1 in STRIPS.

Ex. 1.2 — Model the problem from Fig. 1 in FDR.

2. h™®* Heuristic

Definition 3. Given a STRIPS planning task IT = (F, O, Sinit, Sgoal; ¢), IIT = (F, OF, sinat,
Sgoals €) denotes a relaxed STRIPS planning task, where OF = {0 = (pre(0;), add(o;), 0)
| 0; € 0}

Definition 4. Let IT = (F, O, Sinit, Sgoai, ¢) denote a STRIPS planning task. The heuristic

function h?d9(s) gives an estimate of the distance from s to a node that satisfies the goal
Sgoal s h244(s) = Y fesgoumDo(s, f), where:

A0(87 O) = Eprre(o)AO(sa f)7 Vo € O,

and

0 if fes,
Ao(s, f) = oo ifVoe O: f ¢ add(o),
min{c(o) + Ao(s,0) |0 € O, f € add(0)} otherwise.

Definition 5. Let IT = (F, O, Sinit, Sgoai; ¢) denote a STRIPS planning task. The heuristic
function h™#*(s) gives an estimate of the distance from s to a node that satisfies the goal
Sgoal a8 N¥(s) = maxyes ,,, A1(s, f), where:

Aq(s,0) = max Aj(s, f), Yoe O,
féepre(o)



and

0 if fes,
Aq(s, f) = oo ifVoe O: f ¢ add(o),
min{c(o) + Ai(s,0) |o € O, f € add(0)} otherwise.

Algorithm 1: Algorithm for computing h™**(s).

Input: II = (F, O, Sinit, S40al; ), state s
Output: h™*(s)

for each f € s do Aq(s, f) <+ 0;

for each f € F\ s do Aj(s, f) + oo;
for each o € O do U(0) « |pre(o)|;

C « 0;

while s, £ C do

¢« argminge 7\ o A1(s, f);

C + CUA{c};

for each o € O, ¢ € pre(o) do

U(o) «+ Ulo) — 1,

10 if U(o) =0 then

11 for each f € add(o) do

12 ‘ Aq(s, f) < min{Aq(s, f),c(0) + Ai(s,c)};
13 end

© W N O 0k W =

14 end

15 end

16 end
17 h™*¥(s) = maXfes ., Aq(s, f);

Exercises

Ex. 2.1 — Modify Algorithm 1 to compute h®dd instead of h™a*,

Ex. 2.2 — Compute h™(s;,i), h*9 (s;:1), hT (84nit ), and h* (s, ) for the following prob-
lem II = <.F, O, Sinity Sgoals C):
F ={a,b,c,de, f,g}
pre |add |del
o1[{a} |{c,d}|{a}
0 2 {a,b}|{e} |0
o3| {b,e} |{d, f}|{a, e}
og|{b} |{a} |0

o5 |{d,e}|{g} [{e}
Sinit = {CL, b}7 Sgoal = {f: g}

N T = e




3. LM-Cut Heuristic

Definition 6. A disjunctive operator landmark L. C O is a set of operators such that
every plan contains at least one operator from L.

Definition 7. Let II = (F, O, sinit, Sgoai, ¢) denote a planning task, let A; denote the
function from Definition 5 for II, and let supp(o) = arg max ¢ o) A1(f) denote a function
mapping each operator to its supporter.

A justification graph G = (N, E) is a directed labeled multigraph with a set of nodes
N = {ny | f € F} and a set of edges £ = {(ns,ns,0) | 0 € O,s = supp(o),t € add(o)},
where the triple (a,b,[) denotes an edge from a to b with the label .

An s-t-cut C(G,s,t) = (N, N* U N?) is a partitioning of nodes from the justification
graph G = (N, E) such that N* contains all nodes from which ¢ can be reached with a
zero-cost path, N contains all nodes reachable from s without passing through any node
from N*, and N® = N\ (N° U N*).

Algorithm 2: Algorithm for computing hI™ <t (s).

Input: II = (F, O, sinit, Sgoal, C), State s

Output: h'mut(s)

hlm—cut(s) s 0;

I = (F' = FU{L,G}, O = O U{0init; 0goat }s Sipit = {1}, 8yo = {G} c1), where
pre(oim't) = {I}, add(oim't) =S, del(oinit) = ®7 pre(ogoal) = Sgoal> add(ogoal) = {G}a
del(0g0a1) = 0, c1(0init) = 0, c1(040a1) = 0, and c1(0) = c(o) for all 0 € O;

314+ 1;

4 while h™*(II;, s/, .,) # 0 do

5 Construct a justification graph G; from IL;;

6 Construct an s-t-cut C;(Gy,ny, ng) = (N, Nf U N?);

7 Create a landmark L; as a set of labels of edges that cross the cut C;, i.e., they

lead from ]Vi0 to N,

N =

8 | my <« minger, ¢i(0);
hlm—cut(s) — hlm—cut(s) + my;
10 Set ;1 = (F', O, 8.4, s’goal, Ci+1), where ¢;11(0) = ¢;(0) — m; if o € L;, and

ci+1(0) = ¢;(0) otherwise;
11 141+ 1;
12 end

Exercises
Ex. 3.1 — Modify Algorithm 1 to compute h™®* and to find supporters from Definition 7
at the same time.

Ex. 3.2 — Compute h™(s; ;) for the following problem II = (F, O, sinit, Sgoal> C)*
f == {87 t) q1, 42, QB}



‘pre ‘add ‘del‘

01 {8} {Q1>Q2}@
O= o0y |{s} {q1,43} |0
0
0

o3 [{s} {92, g3}
fin|{q1, 92,93} | {t}
Sinit = {S}, Sgoal = {t}

c
1
1
1
0

Ex. 3.3 — Compute h™ (i), hlm—cut(Smm)7 h+(5im't), and h*(s;nit) for the following
problem II = <-F7 O, sinit, Sgoal C>:
./T": {a7b7cadae7i’g}

pre add |del |c
o1 |{i} {a,b}|0 2
o2 | {i} {b,c} |0 3
O = o3|{a,c} [{d} [{c} |1
or|{b.d} |{et [T} |3
05 {a’ = 6} {g} {07 d} 1
os|{a}  |{e} |{ach|s
Sinit = {Z}v Sgoal = {g}
Ex. 3.4 — Decide dominance for the following cases: h™#% 5= hadd pmax . plm-cut }max

- h+, hlm—cut < h+, hlm—cut = hmax

4. Merge And Shrink Heuristic

Definition 8. A transition system is a tuple 7 = (S, L,T,I,G), where S is a finite set
of states, L is a finite set of labels, each label has cost c(I) € Rj, T C S x L x S is a
transition relation, I C S is a set of initial states, and G C S is a set of goal states.

Definition 9. Given an FDR planning task P = (V, O, suit, Sgoal, ¢), T (P) = (S, L, T,I,G)
denote a transition system of P, where S is a set of states over V, L = O, T =
{(s,0,t) | res(0,s) =t}, I = {sinit}, and G = {s | s € S, s is consistent with sgoq}.

Definition 10. Let 71 = (S*, L, 7', I',G') and T2 = (S?, L, T2, 1%, G?) denote two tran-
sition systems with the same set of labels, and let o : S' — S2. We say that S? is
an abstraction of S' with abstraction function « if for every s € I' it holds that
a(s) € I? and for every s € G! it holds that a(s) € G? and for every (s,l,t) € T it holds
that (a(s),l,a(t)) € T

Definition 11. Let P denote an FDR planning task, let A denote an abstraction of a
transition system 7 (P) = (S, L, T, I, G) with the abstraction function c. The abstraction
heuristic induced by A and « is the function 2% (s) = h*(A, a(s)) for all s € S.

Definition 12. Given two transition systems 7' = (S, L, 7', I',G') and T2 = (S%,L,T?,
I?, G?) with the same set of labels, the synchronized product 7' ®7?2 = T is a transition
system T = (S,L,T,I,G), where S = S' x S2, T = {((s1,52),1, (t1,2)) | (s1,,82) €
TY (s2,1,t2) € T?}, I =I' x I?, and G = G! x G2.



Algorithm 3: Algorithm for computing merge-and-shrink.

Input: P = (V, 0, Sinit; Sgoals C)

Output: Abstraction M

A < Set of (atomic) abstractions (a4, 7;) of T(P);

while |A| > 1 do
A1 = (aq,T1), A2 = (e, T2) < Select two abstractions from A;
Shrink A; and/or As until they are “small enough”;
A (.A\ {Al, AQ}) U (Al & AQ) // Merge

end

M < The only element of A;

N O ok W =

Exercises

Ex. 4.1 — Compute the synchronized product of 71 = (S L, T I' G') and
(S%,L,T? 1%,G?), where L = {a,b,c,d,e}, S* = {A,B,C,D}, T* = {(A a, B), (B,
(C,c,A),(A,d,A),(Ae,D)}, I' = {A, B}, G' = {A,C}, S? = {X,Y, Z}, T? = {(X,
(X,a,2),(Y,b,2),(Z,¢,Y),(Z,d,Y), (Z,e,Z)}, I? = {X}, and G* = {X}.

),

T2 —
b,C
a,Y),

Ex. 4.2 — Study merge and shrink strategies proposed by Helmert, Haslum, and Hoff-
mann (2007) and compute h™&5(s;,.;) for the problem in Fig. 1 (Ex. 1.2).

5. LP-Based Heuristics

Definition 13. Let P = (V, O, Sinit, Sgoal, ¢) denote an FDR planning task. The do-
main transition graph for a variable V' € V is a tuple Ay = (Ny, Ly, Ty), where
Ny ={n, | v € Dy} U{n,} is a set of nodes, Ly = {o | o € O,V € vars(pre(o)) U
vars(eff(0))} is a set of labels, and Ty C Ny x Ly x Ny is a set of transitions Ty =
{(ny,0,ny) | 0 € Ly,V € vars(eff(0)), pre(o)[V] = u,eff(0)[V] = v} U {(ny,0,ny) | 0 €
Ly, V & vars(eff(o)), pre(o)[V] = v}.

Definition 14. Let P = (V, O, sinit, Sgoal, ¢) denote an FDR planning task, Ay = (Nvy, Ly, Ty)

a domain transition graph for each variable V' € V), and s a state reachable from s;,,;;. Given
the following linear program with real-valued variables x, for each operator o € O:

minimize Z c(0)z,
0cO
subject to LBy, < Z To — Z T, YV €V,Yv € Dy,

(U/707U)€TV (U7O7U/)€TV

where
if V'€ vars(sgoqr) and sgoq[V] = v and s[V] = v,
1By — 1 if V € vars(sgou) and sgoq[V] = v and s[V] # v,
Ve = -1 if (V' & vars(sgoqa1) OF Sgoai[V] # v) and s[V] = v,
0 if (V & vars(sgoar) or Sg0a[V] # v) and s[V] # v,



then the value of the flow heuristic hfV(s) for the state s is

hﬂOW(S) . {Zoeo c(o)xo—‘ if the solution is feasible,
00 if the solution is not feasible.

(Bonet, 2013; Bonet & van den Briel, 2014)

Definition 15. Let P = (V, O, Sinit, Sg0al; ¢) denote an FDR planning task and s a state
reachable from s;,;;. Given the following linear program with real-valued variables Py, for

each variable V' € V and each value v € Dy, and real-valued variables My, for each variable
Vey:

maXimize E PV,Sv',nzt [V]

vey
subject to Py, < My YV € V,Vv € Dy
Z maxpot(V, sgoq1) < 0
Vey
> (maxpot(V,pre(0)) — Pyemoyv)) < (o) Vo€ O,
V evars(eff(o))

where

_f Pyyy if Vo€ vars(p),
mazpot(V, p) = { My otherwise .

then the value of the potential heuristic hP°!(s) for the state s is

> vey Pvspy if the solution is feasible,
00 if the solution is not feasible.

o=

(Pommerening, Helmert, Roger, & Seipp, 2015; Seipp, Pommerening, & Helmert, 2015)

Exercises

Ex. 5.1 — Compute the hf®V(s;,;;) and hP°*(s,;) for the following FDR planning task
P = <V,O, Sinit78g0alac>:

V={A,B,C},

Dy = {D’E}’ Dp = {FvG}v D¢ = {Hﬂ]vK}’

Sinit — {A:D,B:F,C:H}, Sgoal = {A:D,C:K}
O = {01,02,03,04, 05},

00:A=D,C=Hw— A=FE,C=J,c(o1) =2,

09: A=Dw— B=G,c(og) =1,

03: B=G,C=J~C=K,c(o3) =1,

o4: A=FEw— A=D, c(og) =2,

05 :C=Hw— C=J,c(o5) =5.



Ex. 5.2 — How can be flow heuristic improved with landmarks (e.g., from the LM-Cut
heuristic)?

Ex. 5.3 — How can we modify objective of the LP for the potential heuristic so we still
obtain admissible estimate for all reachable states?

6. Mutex Groups

Definition 16. Let II = (F, O, sinit, Sgoal, ) denote a STRIPS planning task, and let
M C F denote a set of facts. A mutex group M C F is a set of facts such that for every
reachable state s it holds that |[M N s| < 1. A mutex group that is not subset of any other
mutex group is called a maximal mutex group.

Definition 17. (Fiser & Komenda, 2018) A fact-alternating mutex group (fam-group)
M C F is a set of facts such that |M N sjpi| < 1 and |[M Nadd(o)| < |M N pre(o) Ndel(o)|
for every operator o € O. A fam-group that is not subset of any other fam-group is called
a maximal fam-group.

Proposition 18. Every fam-group is a mutex group.

Algorithm 4: Inference of fact-alternating mutex groups using ILP.
Input: STRIPS planning task II = (F, O, Sinit, Sgoal, )
Output: A set of fam-groups M

1 Create ILP with a binary variable x; € {0, 1} for every fact f; € F;

2 Add constraint } .. @ <1

3 For each operator o € O add constraint }- 1. c.qq(0) Ti < D f,edel(0)npre(o) T
4 Set objective function of ILP to maximize ;- r xi;

5 M <« 0;

6 Solve ILP and if a solution was found, save {f; | f; € F,z; = 1} into M,

7 while |[M| > 1 do

8 Add M to the output set M;

9 Add constraint ¢ o @i > 1
10 | M+ 0;
11 Solve ILP and if a solution was found, save {f; | fi € F,z; = 1} into M;
12 end

Theorem 19. Algorithm 4 is complete with respect to the maximal fam-groups.

Exercises
Ex. 6.1 — Translate the FDR planning task from Ex. 5.1 into STRIPS.

Ex. 6.2 — Translate the following STRIPS planning task into FDR: IT = (F, O, sinit, Sgoal, C):
f: {CL?b?cadaehf}



pre add | del
o1 |{a} {b} |{a}

o_ | |{a}|{)
o3| {0} {c} |{b}
o4|{a,d} |{f}
05 {Ca d7 f} {6} {dv f}

Sinit = {b, d}> Sgoal = {6}

Try to guess mutex groups.

== = =0
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