PUI: Notes on Classical Planning

Daniel Fišer
DANFIS@DANFIS.CZ
Department of Computer Science, Faculty of Electrical Engineering
Czech Technical University in Prague

1. Representations

Definition 1. A STRIPS planning task Π is specified by a tuple $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$, where $\mathcal{F}=\left\{f_{1}, \ldots, f_{n}\right\}$ is a set of facts, $\mathcal{O}=\left\{o_{1}, \ldots, o_{m}\right\}$ is a set of operators, and c is a cost function mapping each operator to a non-negative real number. A state $s \subseteq \mathcal{F}$ is a set of facts, $s_{\text {init }} \subseteq \mathcal{F}$ is an initial state and $s_{\text {goal }} \subseteq \mathcal{F}$ is a goal specification. An operator o is a triple $o=\langle\operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o)\rangle$, where $\operatorname{pre}(o) \subseteq \mathcal{F}$ is a set of preconditions, and $\operatorname{add}(o) \subseteq \mathcal{F}$ and $\operatorname{del}(o) \subseteq \mathcal{F}$ are sets of add and delete effects, respectively. All operators are well-formed, i.e., $\operatorname{add}(o) \cap \operatorname{del}(o)=\emptyset$ and $\operatorname{pre}(o) \cap \operatorname{add}(o)=\emptyset$. An operator o is applicable in a state s if $\operatorname{pre}(o) \subseteq s$. The resulting state of applying an applicable operator o in a state s is the state $o[s]=(s \backslash \operatorname{del}(o)) \cup \operatorname{add}(o)$. A state s is a goal state iff $s_{\text {goal }} \subseteq s$.

A sequence of operators $\pi=\left\langle o_{1}, \ldots, o_{n}\right\rangle$ is applicable in a state s_{0} if there are states s_{1}, \ldots, s_{n} such that o_{i} is applicable in s_{i-1} and $s_{i}=o_{i}\left[s_{i-1}\right]$ for $1 \leq i \leq n$. The resulting state of this application is $\pi\left[s_{0}\right]=s_{n}$ and the cost of the plan is $\mathrm{c}(\pi)=\sum_{o \in \pi} \mathrm{c}(o)$. A sequence of operators π is called a plan iff $s_{\text {goal }} \subseteq \pi\left[s_{\text {init }}\right]$, and an optimal plan is a plan with the minimal cost over all plans.

Definition 2. An FDR planning task P is specified by a tuple $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$, where \mathcal{V} is a finite set of variables. Each variable $V \in \mathcal{V}$ has a finite domain D_{V}. A (partial) state s is a (partial) variable assignement over \mathcal{V}. We write vars(s) for the set of variables defined in s and $s[V]$ for the value of V in s. The notation $s[V]=\perp$ means that $V \notin \operatorname{vars}(s)$. A partial state s is consistent with a partial state s^{\prime} if $s[V]=s^{\prime}[V]$ for all $V \in \operatorname{vars}\left(s^{\prime}\right)$. We say that atom $V=v$ is true in a (partial) state s iff $s[V]=v$. By c we denote a cost function mapping each operator to a non-negative real number. An operator $o \in \mathcal{O}$ is a pair $o=\langle\operatorname{pre}(o)$, eff $(o)\rangle$, where precondition pre (o) and effect eff (o) are partial assignements over \mathcal{V}. We require that $V=v$ cannot be both a precondition and an effect. The (complete) state $s_{\text {init }}$ is the initial state of the task and the partial state $s_{\text {goal }}$ describes its goal.

An operator o is applicable in a state s if s is consistent with pre (o). The resulting state of applying an applicabe operator o in the state s is the state $\operatorname{res}(o, s)$ with

$$
\operatorname{res}(o, s)=\left\{\begin{aligned}
\operatorname{eff}(o)[V] & \text { if } V \in \operatorname{vars}(\operatorname{eff}(o)), \\
s[V] & \text { otherwise }
\end{aligned}\right.
$$

A sequence of operators $\pi=\left\langle o_{1}, \ldots, o_{n}\right\rangle$ is applicable in a state s_{0} if there are states s_{1}, \ldots, s_{n} such that o_{i} is applicable in s_{i-1} and $s_{i}=\operatorname{res}\left(o_{i}, s_{i-1}\right)$ for $1 \leq i \leq n$. The resulting state of this application is $\operatorname{res}\left(\pi, s_{0}\right)=s_{n}$ and the cost of the plan is $\mathrm{c}(\pi)=\sum_{o \in \pi} \mathrm{c}(o)$.

Figure 1: Example problem.
A sequence of operators π is called a plan iff $\operatorname{res}\left(\pi, s_{\text {init }}\right)$ is consistent with $s_{\text {goal }}$, and an optimal plan is a plan with the minimal cost over all plans.

Exercises

Ex. 1.1 - Model the problem from Fig. 1 in STRIPS.
Ex. 1.2 - Model the problem from Fig. 1 in FDR.

2. $h^{\text {max }}$ Heuristic

Definition 3. Given a STRIPS planning task $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle, \Pi^{+}=\left\langle\mathcal{F}, \mathcal{O}^{+}, s_{\text {init }}\right.$, $\left.s_{\text {goal }}, \mathrm{c}\right\rangle$ denotes a relaxed STRIPS planning task, where $\mathcal{O}^{+}=\left\{o_{i}^{+}=\left\langle\operatorname{pre}\left(o_{i}\right), \operatorname{add}\left(o_{i}\right), \emptyset\right\rangle\right.$ $\left.\mid o_{i} \in \mathcal{O}\right\}$.
Definition 4. Let $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$ denote a STRIPS planning task. The heuristic function $h^{\text {add }}(s)$ gives an estimate of the distance from s to a node that satisfies the goal $s_{\text {goal }}$ as $\mathrm{h}^{\text {add }}(s)=\Sigma_{f \in s_{\text {goal }}} \Delta_{0}(s, f)$, where:

$$
\Delta_{0}(s, o)=\Sigma_{f \in \operatorname{pre}(o)} \Delta_{0}(s, f), \quad \forall o \in \mathcal{O},
$$

and

$$
\Delta_{0}(s, f)=\left\{\begin{aligned}
0 & \text { if } f \in s, \\
\infty & \text { if } \forall o \in \mathcal{O}: f \notin \operatorname{add}(o), \\
\min \left\{\mathrm{c}(o)+\Delta_{0}(s, o) \mid o \in \mathcal{O}, f \in \operatorname{add}(o)\right\} & \text { otherwise }
\end{aligned}\right.
$$

Definition 5. Let $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$ denote a STRIPS planning task. The heuristic function $\mathrm{h}^{\max }(s)$ gives an estimate of the distance from s to a node that satisfies the goal $s_{\text {goal }}$ as $\mathrm{h}^{\max }(s)=\max _{f \in s_{\text {goal }}} \Delta_{1}(s, f)$, where:

$$
\Delta_{1}(s, o)=\max _{f \in \operatorname{pre}(o)} \Delta_{1}(s, f), \quad \forall o \in \mathcal{O}
$$

and

$$
\Delta_{1}(s, f)=\left\{\begin{aligned}
0 & \text { if } f \in s \\
\infty & \text { if } \forall o \in \mathcal{O}: f \notin \operatorname{add}(o), \\
\min \left\{\mathrm{c}(o)+\Delta_{1}(s, o) \mid o \in \mathcal{O}, f \in \operatorname{add}(o)\right\} & \text { otherwise }
\end{aligned}\right.
$$

```
Algorithm 1: Algorithm for computing \(\mathrm{h}^{\max }(s)\).
    Input: \(\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle\), state \(s\)
    Output: \(\mathrm{h}^{\max }(s)\)
    for each \(f \in s\) do \(\Delta_{1}(s, f) \leftarrow 0\);
    for each \(f \in \mathcal{F} \backslash s\) do \(\Delta_{1}(s, f) \leftarrow \infty\);
    for each \(o \in \mathcal{O}\) do \(U(o) \leftarrow|\operatorname{pre}(o)| ;\)
    \(C \leftarrow \emptyset ;\)
    while \(s_{\text {goal }} \nsubseteq C\) do
        \(c \leftarrow \arg \min _{f \in \mathcal{F} \backslash C} \Delta_{1}(s, f) ;\)
        \(C \leftarrow C \cup\{c\} ;\)
        for each \(o \in \mathcal{O}, c \in \operatorname{pre}(o)\) do
            \(U(o) \leftarrow U(o)-1 ;\)
            if \(U(o)=0\) then
                for each \(f \in \operatorname{add}(o)\) do
                    \(\Delta_{1}(s, f) \leftarrow \min \left\{\Delta_{1}(s, f), \mathrm{c}(o)+\Delta_{1}(s, c)\right\} ;\)
                    end
                end
        end
    end
    \(\mathrm{h}^{\max }(s)=\max _{f \in s_{\text {goal }}} \Delta_{1}(s, f) ;\)
```


Exercises

Ex. 2.1 - Modify Algorithm 1 to compute $h^{\text {add }}$ instead of $h^{\text {max }}$.
Ex. 2.2 - Compute $\mathrm{h}^{\max }\left(s_{\text {init }}\right)$, $\mathrm{h}^{\text {add }}\left(s_{\text {init }}\right), \mathrm{h}^{+}\left(s_{\text {init }}\right)$, and $\mathrm{h}^{\star}\left(s_{\text {init }}\right)$ for the following problem $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$:
$\mathcal{F}=\{a, b, c, d, e, f, g\}$

$\mathcal{O}=$| | pre | add | del | c |
| :--- | :--- | :--- | :--- | :--- |
| o_{1} | $\{a\}$ | $\{c, d\}$ | $\{a\}$ | 1 |
| o_{2} | $\{a, b\}$ | $\{e\}$ | \emptyset | 1 |
| o_{3} | $\{b, e\}$ | $\{d, f\}$ | $\{a, e\}$ | 1 |
| o_{4} | $\{b\}$ | $\{a\}$ | \emptyset | 1 |
| o_{5} | $\{d, e\}$ | $\{g\}$ | $\{e\}$ | 1 |

$s_{\text {init }}=\{a, b\}, s_{\text {goal }}=\{f, g\}$

3. LM-Cut Heuristic

Definition 6. A disjunctive operator landmark $L \subseteq \mathcal{O}$ is a set of operators such that every plan contains at least one operator from L.

Definition 7. Let $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$ denote a planning task, let Δ_{1} denote the function from Definition 5 for Π, and let $\operatorname{supp}(o)=\arg \max _{f \in \operatorname{pre}(o)} \Delta_{1}(f)$ denote a function mapping each operator to its supporter.

A justification graph $G=(N, E)$ is a directed labeled multigraph with a set of nodes $N=\left\{n_{f} \mid f \in \mathcal{F}\right\}$ and a set of edges $E=\left\{\left(n_{s}, n_{t}, o\right) \mid o \in \mathcal{O}, s=\operatorname{supp}(o), t \in \operatorname{add}(o)\right\}$, where the triple (a, b, l) denotes an edge from a to b with the label l.

An s-t-cut $\mathcal{C}(G, s, t)=\left(N^{0}, N^{\star} \cup N^{b}\right)$ is a partitioning of nodes from the justification graph $G=(N, E)$ such that N^{\star} contains all nodes from which t can be reached with a zero-cost path, N^{0} contains all nodes reachable from s without passing through any node from N^{\star}, and $N^{b}=N \backslash\left(N^{0} \cup N^{\star}\right)$.

```
Algorithm 2: Algorithm for computing \(\mathrm{h}^{\text {lm-cut }}(s)\).
    Input: \(\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle\), state \(s\)
    Output: \(\mathrm{h}^{\text {lm-cut }}(s)\)
    \(\mathrm{h}^{\text {lm-cut }}(s) \leftarrow 0\);
    \(\Pi_{1}=\left\langle\mathcal{F}^{\prime}=\mathcal{F} \cup\{I, G\}, \mathcal{O}^{\prime}=\mathcal{O} \cup\left\{o_{\text {init }}, o_{\text {goal }}\right\}, s_{\text {init }}^{\prime}=\{I\}, s_{\text {goal }}^{\prime}=\{G\}, \mathrm{c}_{1}\right\rangle\), where
    \(\operatorname{pre}\left(o_{\text {init }}\right)=\{I\}, \operatorname{add}\left(o_{\text {init }}\right)=s, \operatorname{del}\left(o_{\text {init }}\right)=\emptyset, \operatorname{pre}\left(o_{\text {goal }}\right)=s_{\text {goal }}, \operatorname{add}\left(o_{\text {goal }}\right)=\{G\}\),
    \(\operatorname{del}\left(o_{\text {goal }}\right)=\emptyset, \mathrm{c}_{1}\left(o_{\text {init }}\right)=0, \mathrm{c}_{1}\left(o_{\text {goal }}\right)=0\), and \(\mathrm{c}_{1}(o)=\mathrm{c}(o)\) for all \(o \in \mathcal{O} ;\)
    \(i \leftarrow 1\);
    while \(\mathrm{h}^{\max }\left(\Pi_{i}, s_{\text {init }}^{\prime}\right) \neq 0\) do
        Construct a justification graph \(G_{i}\) from \(\Pi_{i}\);
        Construct an s-t-cut \(\mathcal{C}_{i}\left(G_{i}, n_{I}, n_{G}\right)=\left(N_{i}^{0}, N_{i}^{\star} \cup N_{i}^{b}\right)\);
        Create a landmark \(L_{i}\) as a set of labels of edges that cross the cut \(\mathcal{C}_{i}\), i.e., they
        lead from \(N_{i}^{0}\) to \(N_{i}^{\star}\);
        \(m_{i} \leftarrow \min _{o \in L_{i}} \mathrm{c}_{i}(o) ;\)
        \(\mathrm{h}^{\mathrm{lm}-\mathrm{cut}}(s) \leftarrow \mathrm{h}^{\mathrm{lm}-\mathrm{cut}}(s)+m_{i}\);
        Set \(\Pi_{i+1}=\left\langle\mathcal{F}^{\prime}, \mathcal{O}^{\prime}, s_{\text {init }}^{\prime}, s_{\text {goal }}^{\prime}, \mathrm{c}_{i+1}\right\rangle\), where \(\mathrm{c}_{i+1}(o)=\mathrm{c}_{i}(o)-m_{i}\) if \(o \in L_{i}\), and
        \(\mathrm{c}_{i+1}(o)=\mathrm{c}_{i}(o)\) otherwise;
        \(i \leftarrow i+1 ;\)
    end
```


Exercises

Ex. 3.1 - Modify Algorithm 1 to compute $h^{\max }$ and to find supporters from Definition 7 at the same time.

Ex. 3.2- Compute $\mathrm{h}^{\mathrm{lm}-\mathrm{cut}}\left(s_{\text {init }}\right)$ for the following problem $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$: $\mathcal{F}=\left\{s, t, q_{1}, q_{2}, q_{3}\right\}$

	pre	add	del	c
o_{1}	$\{s\}$	$\left\{q_{1}, q_{2}\right\}$	\emptyset	1
$\mathcal{O}=o_{2}$	$\{s\}$	$\left.q_{1}, q_{3}\right\}$	\emptyset	1
o_{3}	$\{s\}$	$\left\{q_{2}, q_{3}\right\}$	\emptyset	1
\quad fin	$\left\{q_{1}, q_{2}, q_{3}\right\}$	$\{t\}$	\emptyset	0
$s_{\text {init }}=\{s\}, s_{\text {goal }}=\{t\}$				

Ex. 3.3 - Compute $\mathrm{h}^{\max }\left(s_{\text {init }}\right)$, $\mathrm{h}^{\mathrm{lm}-c u t}\left(s_{\text {init }}\right), \mathrm{h}^{+}\left(s_{\text {init }}\right)$, and $\mathrm{h}^{\star}\left(s_{\text {init }}\right)$ for the following problem $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$:
$\mathcal{F}=\{a, b, c, d, e, i, g\}$

	pre	add	del	
o_{1}	\{i\}	$\{a, b\}$	\emptyset	2
o_{2}	\{i\}	$\{b, c\}$	\emptyset	3
$\mathcal{O}=o_{3}$	$\{a, c\}$	$\{d\}$	$\{c\}$	1
O_{4}	$\{b, d\}$	$\{e\}$	$\{b\}$	3
o_{5}	$\{a, c, e\}$	$\{g\}$	$\{c, d\}$	1
o_{6}	$\{a\}$	$\{e\}$	$\{a, c\}$	
$s_{\text {init }}=\{i\}, s_{\text {goal }}=\{g\}$				

Ex. 3.4- Decide dominance for the following cases: $\mathrm{h}^{\max } \succcurlyeq \mathrm{h}^{\text {add }}, \mathrm{h}^{\max } \succcurlyeq \mathrm{h}^{\mathrm{lm}-c u t}, \mathrm{~h}^{\max }$ $\succcurlyeq \mathrm{h}^{+}, \mathrm{h}^{\mathrm{lm}-\mathrm{cut}} \preccurlyeq \mathrm{h}^{+}, \mathrm{h}^{\mathrm{lm}-c u t} \succcurlyeq \mathrm{~h}^{\max }$.

4. Merge And Shrink Heuristic

Definition 8. A transition system is a tuple $\mathcal{T}=\langle S, L, T, I, G\rangle$, where S is a finite set of states, L is a finite set of labels, each label has cost $\mathrm{c}(l) \in \mathbb{R}_{0}^{+}, T \subseteq S \times L \times S$ is a transition relation, $I \subseteq S$ is a set of initial states, and $G \subseteq S$ is a set of goal states.

Definition 9. Given an FDR planning task $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle, \mathcal{T}(P)=\langle S, L, T, I, G\rangle$ denote a transition system of P, where S is a set of states over $\mathcal{V}, L=\mathcal{O}, T=$ $\{(s, o, t) \mid \operatorname{res}(o, s)=t\}, I=\left\{s_{\text {init }}\right\}$, and $G=\left\{s \mid s \in S, s\right.$ is consistent with $\left.s_{\text {goal }}\right\}$.

Definition 10. Let $\mathcal{T}^{1}=\left\langle S^{1}, L, T^{1}, I^{1}, G^{1}\right\rangle$ and $\mathcal{T}^{2}=\left\langle S^{2}, L, T^{2}, I^{2}, G^{2}\right\rangle$ denote two transition systems with the same set of labels, and let $\alpha: S^{1} \mapsto S^{2}$. We say that S^{2} is an abstraction of S^{1} with abstraction function α if for every $s \in I^{1}$ it holds that $\alpha(s) \in I^{2}$ and for every $s \in G^{1}$ it holds that $\alpha(s) \in G^{2}$ and for every $(s, l, t) \in T^{1}$ it holds that $(\alpha(s), l, \alpha(t)) \in T^{2}$.

Definition 11. Let P denote an FDR planning task, let \mathcal{A} denote an abstraction of a transition system $\mathcal{T}(P)=\langle S, L, T, I, G\rangle$ with the abstraction function α. The abstraction heuristic induced by \mathcal{A} and α is the function $h^{\mathcal{A}, \alpha}(s)=\mathrm{h}^{\star}(\mathcal{A}, \alpha(s))$ for all $s \in S$.

Definition 12. Given two transition systems $\mathcal{T}^{1}=\left\langle S^{1}, L, T^{1}, I^{1}, G^{1}\right\rangle$ and $\mathcal{T}^{2}=\left\langle S^{2}, L, T^{2}\right.$, $\left.I^{2}, G^{2}\right\rangle$ with the same set of labels, the synchronized product $\mathcal{T}^{1} \otimes \mathcal{T}^{2}=\mathcal{T}$ is a transition system $\mathcal{T}=\langle S, L, T, I, G\rangle$, where $S=S^{1} \times S^{2}, T=\left\{\left(\left(s_{1}, s_{2}\right), l,\left(t_{1}, t_{2}\right)\right) \mid\left(s_{1}, l, s_{2}\right) \in\right.$ $\left.T^{1},\left(s_{2}, l, t_{2}\right) \in T^{2}\right\}, I=I^{1} \times I^{2}$, and $G=G^{1} \times G^{2}$.

```
Algorithm 3: Algorithm for computing merge-and-shrink.
    Input: \(P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle\)
    Output: Abstraction \(\mathcal{M}\)
    \(\mathcal{A} \leftarrow\) Set of (atomic) abstractions \(\left(\alpha_{i}, \mathcal{T}_{i}\right)\) of \(\mathcal{T}(P)\);
    while \(|\mathcal{A}|>1\) do
        \(A_{1}=\left(\alpha_{1}, \mathcal{T}_{1}\right), A_{2}=\left(\alpha_{2}, \mathcal{T}_{2}\right) \leftarrow\) Select two abstractions from \(\mathcal{A}\);
        Shrink \(A_{1}\) and/or \(A_{2}\) until they are "small enough";
        \(\mathcal{A} \leftarrow\left(\mathcal{A} \backslash\left\{A_{1}, A_{2}\right\}\right) \cup\left(A_{1} \otimes A_{2}\right) / /\) Merge
    end
    \(\mathcal{M} \leftarrow\) The only element of \(\mathcal{A} ;\)
```


Exercises

Ex. 4.1 - Compute the synchronized product of $\mathcal{T}^{1}=\left\langle S^{1}, L, T^{1}, I^{1}, G^{1}\right\rangle$ and $\mathcal{T}^{2}=$ $\left\langle S^{2}, L, T^{2}, I^{2}, G^{2}\right\rangle$, where $L=\{a, b, c, d, e\}, S^{1}=\{A, B, C, D\}, T^{1}=\{(A, a, B),(B, b, C)$, $(C, c, A),(A, d, A),(A, e, D)\}, I^{1}=\{A, B\}, G^{1}=\{A, C\}, S^{2}=\{X, Y, Z\}, T^{2}=\{(X, a, Y)$, $(X, a, Z),(Y, b, Z),(Z, c, Y),(Z, d, Y),(Z, e, Z)\}, I^{2}=\{X\}$, and $G^{2}=\{X\}$.

Ex. 4.2 - Study merge and shrink strategies proposed by Helmert, Haslum, and Hoffmann (2007) and compute $\mathrm{h}^{\mathrm{m} \& s}\left(s_{\text {init }}\right)$ for the problem in Fig. 1 (Ex. 1.2).

5. LP-Based Heuristics

Definition 13. Let $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$ denote an FDR planning task. The domain transition graph for a variable $V \in \mathcal{V}$ is a tuple $\mathcal{A}_{V}=\left(N_{V}, L_{V}, T_{V}\right)$, where $N_{V}=\left\{n_{v} \mid v \in D_{V}\right\} \cup\left\{n_{\perp}\right\}$ is a set of nodes, $L_{V}=\{o \mid o \in \mathcal{O}, V \in \operatorname{vars}(\operatorname{pre}(o)) \cup$ $\operatorname{vars}(\mathrm{eff}(o))\}$ is a set of labels, and $T_{V} \subseteq N_{V} \times L_{V} \times N_{V}$ is a set of transitions $T_{V}=$ $\left\{\left(n_{u}, o, n_{v}\right) \mid o \in L_{V}, V \in \operatorname{vars}(\operatorname{eff}(o)), \operatorname{pre}(o)[V]=u, \operatorname{eff}(o)[V]=v\right\} \cup\left\{\left(n_{v}, o, n_{v}\right) \mid o \in\right.$ $\left.L_{V}, V \notin \operatorname{vars}(\operatorname{eff}(o)), \operatorname{pre}(o)[V]=v\right\}$.

Definition 14. Let $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$ denote an FDR planning task, $\mathcal{A}_{V}=\left(N_{V}, L_{V}, T_{V}\right)$ a domain transition graph for each variable $V \in \mathcal{V}$, and s a state reachable from $s_{\text {init }}$. Given the following linear program with real-valued variables x_{o} for each operator $o \in \mathcal{O}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{o \in \mathcal{O}} c(o) x_{o} \\
\text { subject to } & L B_{V, v} \leq \sum_{\left(v^{\prime}, o, v\right) \in T_{V}} x_{o}-\sum_{\left(v, o, v^{\prime}\right) \in T_{V}} x_{o} \quad \forall V \in \mathcal{V}, \forall v \in D_{V},
\end{array}
$$

where

$$
L B_{V, v}=\left\{\begin{aligned}
0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\
1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\
-1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\
0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v,
\end{aligned}\right.
$$

then the value of the flow heuristic $\mathrm{h}^{\text {flow }}(s)$ for the state s is

$$
\mathrm{h}^{\text {flow }}(s)=\left\{\begin{array}{cl}
\left\lceil\sum_{o \in \mathcal{O}} c(o) x_{o}\right\rceil & \text { if the solution is feasible } \\
\infty & \text { if the solution is not feasible } .
\end{array}\right.
$$

(Bonet, 2013; Bonet \& van den Briel, 2014)
Definition 15. Let $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$ denote an FDR planning task and s a state reachable from $s_{\text {init }}$. Given the following linear program with real-valued variables $P_{V, v}$ for each variable $V \in \mathcal{V}$ and each value $v \in D_{V}$, and real-valued variables M_{V} for each variable $V \in \mathcal{V}$:

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{V \in \mathcal{V}} P_{V, s_{\text {init }}[V]} & \\
\text { subject to } & P_{V, v} \leq M_{V} & \forall V \in \mathcal{V}, \forall v \in D_{V} \\
& \sum_{V \in \mathcal{V}} \operatorname{maxpot}\left(V, s_{\text {goal }}\right) \leq 0 & \\
& \sum_{V \in \operatorname{vars}(\operatorname{eff}(o))}\left(\operatorname{maxpot}(V, \operatorname{pre}(o))-P_{V, \operatorname{eff}(o)[V]}\right) \leq \mathrm{c}(o) \quad \forall o \in \mathcal{O},
\end{array}
$$

where

$$
\operatorname{maxpot}(V, p)= \begin{cases}P_{V, p[V]} & \text { if } V \in \operatorname{vars}(p), \\ M_{V} & \text { otherwise }\end{cases}
$$

then the value of the potential heuristic $\mathrm{h}^{\text {pot }}(s)$ for the state s is

$$
\mathrm{h}^{\mathrm{pot}}(s)=\left\{\begin{array}{cl}
\sum_{V \in \mathcal{V}} P_{V, s[V]} & \text { if the solution is feasible, } \\
\infty & \text { if the solution is not feasible. }
\end{array}\right.
$$

(Pommerening, Helmert, Röger, \& Seipp, 2015; Seipp, Pommerening, \& Helmert, 2015)

Exercises

Ex. 5.1 - Compute the $\mathrm{h}^{\text {flow }}\left(s_{\text {init }}\right)$ and $\mathrm{h}^{\text {pot }}\left(s_{\text {init }}\right)$ for the following FDR planning task $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$:
$\mathcal{V}=\{A, B, C\}$,
$D_{A}=\{D, E\}, D_{B}=\{F, G\}, D_{C}=\{H, J, K\}$,
$s_{\text {init }}=\{A=D, B=F, C=H\}, s_{\text {goal }}=\{A=D, C=K\}$
$\mathcal{O}=\left\{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}\right\}$,
$o_{1}: A=D, C=H \mapsto A=E, C=J, \mathrm{c}\left(o_{1}\right)=2$,
$o_{2}: A=D \mapsto B=G, \mathrm{c}\left(o_{2}\right)=1$,
$o_{3}: B=G, C=J \mapsto C=K, \mathrm{c}\left(o_{3}\right)=1$,
$o_{4}: A=E \mapsto A=D, \mathrm{c}\left(o_{4}\right)=2$,
$o_{5}: C=H \mapsto C=J, \mathrm{c}\left(o_{5}\right)=5$.

Ex. 5.2 - How can be flow heuristic improved with landmarks (e.g., from the LM-Cut heuristic)?

Ex. 5.3 - How can we modify objective of the LP for the potential heuristic so we still obtain admissible estimate for all reachable states?

6. Mutex Groups

Definition 16. Let $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$ denote a STRIPS planning task, and let $M \subseteq \mathcal{F}$ denote a set of facts. A mutex group $M \subseteq \mathcal{F}$ is a set of facts such that for every reachable state s it holds that $|M \cap s| \leq 1$. A mutex group that is not subset of any other mutex group is called a maximal mutex group.

Definition 17. (Fišer \& Komenda, 2018) A fact-alternating mutex group (fam-group) $M \subseteq \mathcal{F}$ is a set of facts such that $\left|M \cap s_{\text {init }}\right| \leq 1$ and $|M \cap \operatorname{add}(o)| \leq|M \cap \operatorname{pre}(o) \cap \operatorname{del}(o)|$ for every operator $o \in \mathcal{O}$. A fam-group that is not subset of any other fam-group is called a maximal fam-group.

Proposition 18. Every fam-group is a mutex group.

```
Algorithm 4: Inference of fact-alternating mutex groups using ILP.
    Input: STRIPS planning task \(\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle\)
    Output: A set of fam-groups \(\mathcal{M}\)
    Create ILP with a binary variable \(x_{i} \in\{0,1\}\) for every fact \(f_{i} \in \mathcal{F}\);
    Add constraint \(\sum_{f_{i} \in s_{\text {init }}} x_{i} \leq 1\);
    For each operator \(o \in \mathcal{O}\) add constraint \(\sum_{f_{i} \in \operatorname{add}(o)} x_{i} \leq \sum_{f_{i} \in \operatorname{del}(o) \cap \operatorname{pre}(o)} x_{i}\);
    Set objective function of ILP to maximize \(\sum_{f_{i} \in \mathcal{F}} x_{i}\);
    \(M \leftarrow \emptyset ;\)
    Solve ILP and if a solution was found, save \(\left\{f_{i} \mid f_{i} \in \mathcal{F}, x_{i}=1\right\}\) into \(M\);
    while \(|M| \geq 1\) do
        Add \(M\) to the output set \(\mathcal{M}\);
        Add constraint \(\sum_{f_{i} \notin M} x_{i} \geq 1\);
        \(M \leftarrow \emptyset ;\)
        Solve ILP and if a solution was found, save \(\left\{f_{i} \mid f_{i} \in \mathcal{F}, x_{i}=1\right\}\) into \(M\);
    end
```

Theorem 19. Algorithm 4 is complete with respect to the maximal fam-groups.

Exercises

Ex. 6.1 - Translate the FDR planning task from Ex. 5.1 into STRIPS.
Ex. 6.2 - Translate the following STRIPS planning task into FDR: $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$: $\mathcal{F}=\{a, b, c, d, e, f\}$

	pre	add	del	c
o_{1}	$\{a\}$	$\{b\}$	$\{a\}$	1
o_{2}	$\{b\}$	$\{a\}$	$\{b\}$	1
o_{3}	$\{b\}$	$\{c\}$	$\{b\}$	1
o_{4}	$\{a, d\}$	$\{f\}$		1
o_{5}	$\{c, d, f\}$	$\{e\}$	$\{d, f\}$	1
$s_{\text {init }}=\{b, d\}, s_{\text {goal }}=\{e\}$				

Try to guess mutex groups.

References

Bonet, B. (2013). An admissible heuristic for SAS^{+}planning obtained from the state equation. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 2268-2274.

Bonet, B., \& Helmert, M. (2010). Strengthening landmark heuristics via hitting sets. In 19th European Conference on Artificial Intelligence, ECAI, pp. 329-334.

Bonet, B., \& van den Briel, M. (2014). Flow-based heuristics for optimal planning: Landmarks and merges. In Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling (ICAPS), pp. 47-55.

Fišer, D., \& Komenda, A. (2018). Fact-alternating mutex groups for classical planning. J. Artif. Intell. Res., 61, 475-521.

Helmert, M., \& Domshlak, C. (2009). Landmarks, critical paths and abstractions: What's the difference anyway?. In Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS).
Helmert, M., Haslum, P., \& Hoffmann, J. (2007). Flexible abstraction heuristics for optimal sequential planning. In Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling, (ICAPS), pp. 176-183.
Pommerening, F., Helmert, M., Röger, G., \& Seipp, J. (2015). From non-negative to general operator cost partitioning. In Proceedings of the Twenty-Ninth Conference on Artificial Intelligence (AAAI), pp. 3335-3341.

Seipp, J., Pommerening, F., \& Helmert, M. (2015). New optimization functions for potential heuristics. In Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling (ICAPS), pp. 193-201.

