IRO Homework 2: 2D localization from ultrasound measurements.

Karel Zimmermann

Robot on unknown position x measured three distances d_{1}, d_{2}, d_{3} from three beacons located at coordinates $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. Estimate robots position \mathbf{x} minimizing sum of squares of residual distances $\left\|\mathbf{x}-\mathbf{a}_{i}\right\|_{2}^{2}$ for $i=1 \ldots 3$.

$$
\begin{gathered}
d_{1}=3.6056, d_{2}=2.0000, d_{3}=4.1231, \\
\mathbf{a}_{1}=\binom{1}{1}, \mathbf{a}_{2}=\binom{3}{2}, \mathbf{a}_{3}=\binom{2}{0}
\end{gathered}
$$

1. Formulate the problem as an overdetermined set of non-linear equations.
2. Choose initial solution \mathbf{x}_{0}.
3. Linearize equation around point \mathbf{x}_{0}.
4. Solve overdetermined set of non-linear equations in the least squares sense.
5. Repeat from 3 until convergence is reached.
