From LSQ to NLSQ

Michal Reinštein

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic, reinstein.michal@fel.cvut.cz

Outline of the lecture:

- LSQ - Least Squares
- LSQ - The Proof
- WLSQ- Weighted LSQ
- NLSQ - Non-linear LSQ
- Exercise: Long Base-line 3D Navigation
- Exercise: NLSQ in MATLAB

LSQ - Least Squares Estimation

Given measurements z , we wish to solve for x , assuming linear relationship:

$$
\mathbf{H x}=\mathbf{z}
$$

If \mathbf{H} is a square matrix with $\operatorname{det} \mathbf{H} \neq 0$ then the solution is trivial:

$$
\mathbf{x}=\mathbf{H}^{-1} \mathbf{z}
$$

otherwise (most commonly), we seek such solution $\hat{\mathrm{x}}$ that is closest (in Euclidean distance sense) to the ideal:

$$
\hat{\mathbf{x}}=\underset{x}{\operatorname{argmin}}\|\mathbf{H} \mathbf{x}-\mathbf{z}\|^{2}=\underset{x}{\operatorname{argmin}}\left\{(\mathbf{H} \mathbf{x}-\mathbf{z})^{\top}(\mathbf{H} \mathbf{x}-\mathbf{z})\right\}
$$

LSQ - The Proof

Given the following matrix identities:

- $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$
- $\|\mathrm{x}\|^{2}=\mathrm{x}^{\top} \mathbf{x}$
$-\nabla_{x} \mathbf{b}^{\top} \mathbf{x}=\mathbf{b}$
- $\nabla_{x} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=2 \mathbf{A} \mathbf{x}$

We can derive the closed form solution ${ }^{1}$:

$$
\begin{gathered}
\|\mathbf{H} \mathbf{x}-\mathbf{z}\|^{2}=\mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{H} \mathbf{x}-\mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{z}-\mathbf{z}^{\top} \mathbf{H} \mathbf{x}+\mathbf{z}^{\top} \mathbf{z} \\
\frac{\partial\|\mathbf{H} \mathbf{x}-\mathbf{z}\|^{2}}{\partial \mathbf{x}}=2 \mathbf{H}^{\top} \mathbf{H} \mathbf{x}-2 \mathbf{H}^{\top} \mathbf{z}=0 \\
\Rightarrow \mathbf{x}=\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{z}
\end{gathered}
$$

[^0]
LSQ - Weighted Least Squares

If we have information about reliability of the measurements in z , we can capture this as a covariance matrix \mathbf{R} (diagonal terms only since the measurements are not correlated:

$$
\mathbf{R}=\left[\begin{array}{ccc}
\sigma_{z 1}^{2} & 0 & 0 \\
0 & \sigma_{z 2}^{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

In the error vector \mathbf{e} defined as $\mathbf{e}=\mathbf{H x}-\mathrm{z}$ we can weight each its element by uncertainty in each element of the measurement vector \mathbf{z}, i.e. by \mathbf{R}^{-1}. The optimization criteria then becomes:

$$
\hat{\mathbf{x}}=\underset{x}{\operatorname{argmin}}\left\|\mathbf{R}^{-1}(\mathbf{H} \mathbf{x}-\mathbf{z})\right\|^{2}
$$

Following the same derivation procedure, we obtain the weighted least squares:

$$
\Rightarrow \quad \mathbf{x}=\left(\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{z}
$$

NLSQ - Non-linear Least Squares

Previous example concerned a linear observation model, however, in real world most of the models are rather a nonlinear function $\mathbf{h}(\mathbf{x})$. Measuring a Euclidean distance between two points, the task is reformulated:

$$
\hat{\mathbf{x}}=\underset{x}{\operatorname{argmin}}\|(\mathbf{h}(\mathbf{x})-\mathbf{z})\|^{2}
$$

NLSQ - Non-linear Least Squares

The world is non-linear \rightarrow nonlinear model function $\mathbf{h}(\mathbf{x}) \rightarrow$ non-linear LSQ 2 :

$$
\hat{\mathbf{x}}=\underset{x}{\operatorname{argmin}}\|\mathbf{h}(\mathbf{x})-\mathbf{z}\|^{2}
$$

- We seek such δ that for $\mathrm{x}_{1}=\mathrm{x}_{0}+\delta$ the $\left\|\mathbf{h}\left(\mathrm{x}_{1}\right)-\mathrm{z}\right\|^{2}$ is minimized.
- We use Taylor series expansion: $\mathbf{h}\left(\mathbf{x}_{0}+\delta\right)=\mathbf{h}\left(\mathbf{x}_{0}\right)+\nabla \mathbf{H}_{\mathbf{x} 0} \delta$

$$
\left\|\mathbf{h}\left(\mathbf{x}_{1}\right)-\mathbf{z}\right\|^{2}=\left\|\mathbf{h}\left(\mathbf{x}_{0}\right)+\nabla \mathbf{H}_{\mathbf{x} 0} \delta-\mathbf{z}\right\|^{2}=\| \nabla \mathbf{H}_{\mathbf{x} 0} \delta-\left(\mathbf{z}-\mathbf{h}\left(\mathbf{x}_{0}\right) \|^{2}\right.
$$

where $\nabla \mathbf{H}_{\mathrm{x} 0}$ is Jacobian of $\mathrm{h}(\mathrm{x})$:

$$
\nabla \mathbf{H}_{\mathbf{x} 0}=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial \mathbf{h}_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{x}_{m}} \\
\vdots & & \vdots \\
\frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{m}}
\end{array}\right]
$$

[^1]
NLSQ - Non-linear Least Squares

We use Taylor series expansion: $\mathbf{h}\left(\mathbf{x}_{0}+\delta\right)=\mathbf{h}\left(\mathbf{x}_{0}\right)+\nabla \mathbf{H}_{\mathbf{x} 0} \delta$

$$
\left\|\mathbf{h}\left(\mathbf{x}_{1}\right)-\mathbf{z}\right\|^{2}=\left\|\mathbf{h}\left(\mathbf{x}_{0}\right)+\nabla \mathbf{H}_{\mathbf{x} 0} \delta-\mathbf{z}\right\|^{2}=\|\underbrace{\nabla \mathbf{H}_{\mathbf{x} 0}}_{\mathbf{A}} \delta-\underbrace{\left(\mathbf{z}-\mathbf{h}\left(\mathbf{x}_{0}\right)\right.}_{\mathbf{b}}\|^{2}
$$

- We solve it as standard least squares $\mathbf{A} \delta=\mathbf{b}$ and hence by inspection:

$$
\delta=\left(\nabla \mathbf{H}_{\mathbf{x} 0}^{\top} \nabla \mathbf{H}_{\mathrm{x} 0}\right)^{-1} \nabla \mathbf{H}_{\mathrm{x} 0}^{\top}\left(\mathbf{z}-\mathbf{h}\left(\mathbf{x}_{0}\right)\right.
$$

NLSQ - Non-linear Least Squares

The extension of LSQ to the non-linear LSQ can be formulated as an algorithm:

1. Start with an initial guess $\hat{\mathbf{x}}$. ${ }^{3}$
2. Evaluate the LSQ expression for δ (update the $\nabla \mathbf{H}_{\hat{\mathrm{x}}}$ and substitute). ${ }^{4}$

$$
\delta:=\left(\nabla \mathbf{H}_{\hat{\mathbf{x}}}^{\top} \nabla \mathbf{H}_{\hat{\mathbf{x}}}\right)^{-1} \nabla \mathbf{H}_{\hat{\mathbf{x}}}^{\top}[\mathbf{z}-\mathbf{h}(\hat{\mathbf{x}})]
$$

3. Apply the δ correction to our initial estimate: $\hat{\mathrm{x}}:=\hat{\mathrm{x}}+\delta .{ }^{5}$
4. Check for the stopping precision: if $\|\mathbf{h}(\hat{\mathbf{x}})-\mathbf{z}\|^{2}>\epsilon$ proceed with step (2) or stop otherwise. ${ }^{6}$
[^2]
Exercise: Assignment

Long Base-line Navigation

Assume an underwater robot operating within the range of 4 beacons and receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position $\mathbf{x}_{v}=[x, y, z]^{\top}$ while each beacon i is at known position $\mathbf{x}_{b i}=\left[x_{b i}, y_{b i}, z_{b i}\right]^{\top}$. We assume the transceiver operates at speed of sound c.

- Write NLSQ algorithm for estimating the robot position.
- Plot the precision vs iteration curve.
- Play with the algorithm by changing: initial position, measurements noise, stopping criteria.

Exercise: Assignment

Long Base-line Navigation SONARDYNE

Exercise: Solution

Long Base-line Navigation

Exercise: Solution

Long Base-line Navigation

Exercise: Solution

Long Base-line Navigation

Assume an underwater robot operating within the range of 4 beacons and receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position $\mathbf{x}_{v}=[x, y, z]^{\top}$ while each beacon i is at known position $\mathbf{x}_{b i}=\left[x_{b i}, y_{b i}, z_{b i}\right]^{\top}$. The observation model is ${ }^{\top}$:

$$
\mathbf{z}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right]=h\left(\mathbf{x}_{v}\right)=\frac{2}{c}\left[\begin{array}{l}
\left\|\mathbf{x}_{b 1}-\mathbf{x}_{v}\right\| \\
\left\|\mathbf{x}_{b 2}-\mathbf{x}_{v}\right\| \\
\left\|\mathbf{x}_{b 3}-\mathbf{x}_{v}\right\| \\
\left\|\mathbf{x}_{b 4}-\mathbf{x}_{v}\right\|
\end{array}\right]
$$

where t_{i} is the measured time-of-flight from beacon i.

[^3]
Exercise: Solution

Long Base-line Navigation

We derive the $\nabla \mathbf{H}_{\mathrm{x} v}$ and plug it into the 4-step algorithm already introduced:

$$
\nabla \mathbf{H}_{\mathbf{x} v}=-\frac{2}{c}\left[\begin{array}{ccc}
\Delta_{x 1} & \Delta_{y 1} & \Delta_{z 1} \\
\Delta_{x 2} & \Delta_{y 2} & \Delta_{z 2} \\
\Delta_{x 3} & \Delta_{y 3} & \Delta_{z 3} \\
\Delta_{x 4} & \Delta_{y 4} & \Delta_{z 4}
\end{array}\right]
$$

where:

$$
\begin{gathered}
\Delta_{x i}=\left(x_{b i}-x\right) / r_{i}, \Delta_{y i}=\left(y_{b i}-y\right) / r_{i}, \Delta_{z i}=\left(z_{b i}-z\right) / r_{i} \\
r_{i}=\sqrt{\left(x_{b i}-x\right)^{2}+\left(y_{b i}-y\right)^{2}+\left(z_{b i}-z\right)^{2}}
\end{gathered}
$$

Exercise: Solution

Long Base-line Navigation

```
\square88 Non-linear least squares solution to the Long Base-line Navigation
precision_history = []; }\quad\mathrm{ % initialization precision history [m]
% speed fo sound [mps]
c=343;
Xb = [10 50 60 25; 10 20 70 60; 10 10 5 50]; % known beacon positions [m]
Xv_est = [0; 0; 0]; 多 initial estimate of vehicle position [m]
Xv_true = [5.123; 15.456; 25.789]; 守 unknown true vehicle position [m]
% generating time-of-flight measurements (no sensor noise assumed):
Xdiff_true = Xb - repmat (Xv_true, 1, size (Xb, 2));
Ztof = 2*([norm(Xdiff_true(:,1)); norm(Xdiff_true(:,2)); norm(Xdiff_true(:,3)); norm(Xdiff_true (:,4))])/c;
Xdiff_est = Xb - repmat (Xv_est, 1, size (Xb, 2));
Hest = 2*([norm(Xdiff_est(:,1)); norm(Xdiff_est(:,2)); norm(Xdiff_est(:,3)); norm(Xdiff_est(:,4))])/c;
precision = 0.5*c*norm(Ztof - Hest);
while precision > desired_precision
% updating the Jacobian
    for i=1:size (Xb,2)
        dH(i,:) = -2/c*transpose(Xdiff_est(:,i)./norm(Xdiff_est(:,i)));
        end
% updating the position estimate
Xv_est = Xv_est + pinv(dH'*dH)*dH'*(Ztof - Hest);
% propagating new estimate thrgough the observation model
Xdiff_est = Xb - repmat (Xv_est, 1, size (Xb, 2));
Hest = 2*([norm(Xdiff_est(:,1)); norm(Xdiff_est(:,2)); norm(Xdiff_est(:,3)); norm(Xdiff_est(:,4))])/c;
% updating the precision of the current estimate
precision = 0.5*c*norm(Ztof - Hest); %[m]
end
```


[^0]: ${ }^{1}$ in MATLAB use the pseudo-inverse $\operatorname{\operatorname {pin}} \mathrm{v}()$

[^1]: ${ }^{2}$ Note: We still measure the Euclidean distance between two points that we want to optimize over.

[^2]: ${ }^{3}$ Note: We can usually set to zero.
 ${ }^{4}$ Note: This expression is obtained using the LSQ closed form and substitution from previous slide.
 ${ }^{5}$ Note: Due to these updates our initial guess should converge to such $\hat{\mathbf{x}}$ that minimizes the $\|\mathbf{h}(\hat{\mathbf{x}})-\mathbf{z}\|^{2}$
 ${ }^{6}$ Note: ϵ is some small threshold, usually set according to the noise level in the sensors.

[^3]: ${ }^{7}$ Note: We assume the transceiver operates at speed of sound c

