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Outline of the lecture:
� LSQ - Least Squares

� LSQ - The Proof

� WLSQ- Weighted LSQ

� NLSQ - Non-linear LSQ

� Exercise: Long Base-line 3D Navigation

� Exercise: NLSQ in MATLAB
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LSQ - Least Squares Estimation

Given measurements z, we wish to solve for x, assuming linear relationship:

Hx = z

If H is a square matrix with detH 6= 0 then the solution is trivial:

x = H−1z,

otherwise (most commonly), we seek such solution x̂ that is closest (in Euclidean
distance sense) to the ideal:

x̂ = argmin
x

||Hx− z||2 = argmin
x

{
(Hx− z)

>
(Hx− z)

}

http://cmp.felk.cvut.cz
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LSQ - The Proof

Given the following matrix identities:

� (AB)> = B>A>

� ||x||2 = x>x

� ∇x b>x = b

� ∇x x>Ax = 2Ax

We can derive the closed form solution1:

||Hx− z||2 = x>H>Hx− x>H>z− z>Hx + z>z

∂||Hx− z||2

∂x
= 2H>Hx− 2H>z = 0

⇒ x = (H>H)−1H>z

1in MATLAB use the pseudo-inverse pinv()

http://cmp.felk.cvut.cz
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LSQ - Weighted Least Squares

If we have information about reliability of the measurements in z, we can capture
this as a covariance matrix R (diagonal terms only since the measurements are
not correlated:

R =

σ2
z1 0 0

0 σ2
z2 . . .

... ... . . .


In the error vector e defined as e = Hx− z we can weight each its element by
uncertainty in each element of the measurement vector z, i.e. by R−1. The
optimization criteria then becomes:

x̂ = argmin
x

||R−1(Hx− z)||2

Following the same derivation procedure, we obtain the weighted least squares:

⇒ x = (H>R−1H)−1H>R−1z

http://cmp.felk.cvut.cz
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NLSQ - Non-linear Least Squares

Previous example concerned a linear observation model, however, in real world
most of the models are rather a nonlinear function h(x). Measuring a Euclidean
distance between two points, the task is reformulated:

x̂ = argmin
x

||(h(x)− z)||2

http://cmp.felk.cvut.cz
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NLSQ - Non-linear Least Squares

The world is non-linear → nonlinear model function h(x) → non-linear LSQ2:

x̂ = argmin
x

||h(x)− z||2

� We seek such δ that for x1 = x0 + δ the ||h(x1)− z||2 is minimized.
� We use Taylor series expansion: h(x0 + δ) = h(x0) +∇Hx0δ

||h(x1)− z||2 = ||h(x0) +∇Hx0δ − z||2 = ||∇Hx0δ − (z− h(x0)||2

where ∇Hx0 is Jacobian of h(x):

∇Hx0 =
∂h

∂x
=


∂h1
∂x1

. . . ∂h1
∂xm... ...

∂hn
∂x1

. . . ∂hn
∂xm


2Note: We still measure the Euclidean distance between two points that we want to optimize over.
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NLSQ - Non-linear Least Squares

� We use Taylor series expansion: h(x0 + δ) = h(x0) +∇Hx0δ

||h(x1)− z||2 = ||h(x0) +∇Hx0δ− z||2 = || ∇Hx0︸ ︷︷ ︸
A

δ− (z− h(x0)︸ ︷︷ ︸
b

||2

� We solve it as standard least squares Aδ = b and hence by inspection:

δ = (∇Hx
>
0∇Hx0)

−1∇Hx
>
0 (z− h(x0)

http://cmp.felk.cvut.cz
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NLSQ - Non-linear Least Squares

The extension of LSQ to the non-linear LSQ can be formulated as an algorithm:

1. Start with an initial guess x̂. 3

2. Evaluate the LSQ expression for δ (update the ∇Hx̂ and substitute). 4

δ := (∇Hx̂
>∇Hx̂)−1∇Hx̂

>[z− h(x̂)]

3. Apply the δ correction to our initial estimate: x̂ := x̂ + δ.5

4. Check for the stopping precision: if ||h(x̂)− z||2 > ε proceed with step (2)

or stop otherwise.6

3Note: We can usually set to zero.
4Note: This expression is obtained using the LSQ closed form and substitution from previous slide.
5Note: Due to these updates our initial guess should converge to such x̂ that minimizes the ||h(x̂)− z||2
6Note: ε is some small threshold, usually set according to the noise level in the sensors.
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Exercise: Assignment

Long Base-line Navigation

Assume an underwater robot operating within the range of 4 beacons and
receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position xv = [x, y, z]> while each
beacon i is at known position xbi = [xbi, ybi, zbi]

>. We assume the transceiver
operates at speed of sound c.

� Write NLSQ algorithm for estimating the robot position.

� Plot the precision vs iteration curve.

� Play with the algorithm by changing: initial position, measurements noise,
stopping criteria.

http://cmp.felk.cvut.cz
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Exercise: Assignment

Long Base-line Navigation SONARDYNE

http://cmp.felk.cvut.cz
http://www.sonardyne.com/products/positioning/fusion-6g.html
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Exercise: Solution

Long Base-line Navigation
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Exercise: Solution

Long Base-line Navigation
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Exercise: Solution

Long Base-line Navigation

Assume an underwater robot operating within the range of 4 beacons and
receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position xv = [x, y, z]> while each
beacon i is at known position xbi = [xbi, ybi, zbi]

>. The observation model is7:

z =


t1
t2
t3
t4

 = h(xv) =
2

c


||xb1 − xv||
||xb2 − xv||
||xb3 − xv||
||xb4 − xv||


where ti is the measured time-of-flight from beacon i.

7Note: We assume the transceiver operates at speed of sound c

http://cmp.felk.cvut.cz
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Exercise: Solution

Long Base-line Navigation

We derive the ∇Hxv and plug it into the 4-step algorithm already introduced:

∇Hxv = −2

c


∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

∆x3 ∆y3 ∆z3

∆x4 ∆y4 ∆z4


where:

∆xi = (xbi − x)/ri,∆yi = (ybi − y)/ri,∆zi = (zbi − z)/ri

ri =
√

(xbi − x)2 + (ybi − y)2 + (zbi − z)2

http://cmp.felk.cvut.cz
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Exercise: Solution

Long Base-line Navigation
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