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Outline of the lecture:
¢ LSQ - Least Squares ¢ NLSQ - Non-linear LSQ

¢ LSQ - The Proof ¢ Exercise: Long Base-line 3D Navigation
¢ WLSQ- Weighted LSQ ¢ Exercise: NLSQ in MATLAB
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LSQ - Least Squares Estimation

Given measurements z, we wish to solve for x, assuming linear relationship:
Hx =z
If H is a square matrix with det H # 0 then the solution is trivial:

—1
x=H "z,

otherwise (most commonly), we seek such solution X that is closest (in Euclidean
distance sense) to the ideal:

X

argmin ||Hx — z||* = argmin {(HX —z) (Hx — z)}

X X
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Given the following matrix identities:
¢ (AB)' =B'A'
* x| =x"x
® V,b'x=D
¢ V., x'Ax =2Ax

We can derive the closed form solution’:

| Hx —z|?=x"H'Hx—x'H'z—z'Hx+2z'z

O||Hx — z||?
ox
= x=(HTH)'H'z

—9H 'Hx —2H 'z = 0

in MATLAB use the pseudo-inverse pinv()
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If we have information about reliability of the measurements in z, we can capture
this as a covariance matrix R (diagonal terms only since the measurements are
not correlated:

In the error vector e defined as e = Hx — z we can weight each its element by
uncertainty in each element of the measurement vector z, i.e. by R™!. The
optimization criteria then becomes:

X |7

argmin ||[R™!(Hx — z)

Following the same derivation procedure, we obtain the weighted least squares:

= x=(H'RH)"'H' R !z
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Previous example concerned a linear observation model, however, in real world
most of the models are rather a nonlinear function h(x). Measuring a Euclidean
distance between two points, the task is reformulated:

% = argmin [|(h(x) — 2)||?

X
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The world is non-linear — nonlinear model function h(x) — non-linear LSQ?:

X = argmin ||h(x) — z||?

T

® We seek such § that for x; = xq + J the ||h(x;) — z||? is minimized.

® We use Taylor series expansion: h(xg 4+ ¢) = h(xg) + VHy

|h(x1) — 2||* = |[h(xo) + VHxd — z||* = [[VHxod — (z — h(x)||°

where VH, is Jacobian of h(x):

oh

VH,, = =

oh,
0x1

oh,,

| 0x1

dhy ]

OXm,

oh,,

OXm, |

’Note: We still measure the Euclidean distance between two points that we want to optimize over.
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NLSQ - Non-linear Least Squares

® We use Taylor series expansion: h(xg 4+ ¢) = h(xq) + VHy

[h(x1) —z[|* = |[h(x0) + VHxod — 2||* = | ,VI;Ixo, 0— (2 —§(Xol |7

® We solve it as standard least squares A9 = b and hence by inspection:

6 = (VH,, VH,,) " 'VH,, (z — h(x)
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NLSQ - Non-linear Least Squares

The extension of LSQ to the non-linear LSQ can be formulated as an algorithm:

1. Start with an initial guess %. *

2. Evaluate the LSQ expression for § (update the VHj and substitute). *

0= (VH&TVHX)_lvH&T[Z — h(f()]

3. Apply the & correction to our initial estimate: X := %X +§.°

4. Check for the stopping precision: if ||h(X) — z||? > € proceed with step (2)
or stop otherwise.”

>Note: We can usually set to zero.

*Note: This expression is obtained using the LSQ closed form and substitution from previous slide.

"Note: Due to these updates our initial guess should converge to such % that minimizes the ||h(%X) — z||?
®Note: € is some small threshold, usually set according to the noise level in the sensors.
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Exercise: Assignment

Long Base-line Navigation

Assume an underwater robot operating within the range of 4 beacons and
receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position x,, = [z, 1, z] ' while each
beacon i is at known position Xp; = [T4s, Yni, 25s] | . We assume the transceiver

operates at speed of sound c.
¢ Write NLSQ algorithm for estimating the robot position.
® Plot the precision vs iteration curve.

¢ Play with the algorithm by changing: initial position, measurements noise,

stopping criteria.
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Long Base-line Navigation SONARDYNE
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Long Base-line Navigation
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Long Base-line Navigation
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Exercise: Solution

Long Base-line Navigation

Assume an underwater robot operating within the range of 4 beacons and
receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position x,, = [z, 1, z] ' while each
beacon i is at known position Xp; = [T4s, Ysi, 25s] . The observation model is’:

tl Xp1 — Xy
tz 2 Xp2 — X
z= || =h(x,) =" v
tg C Xp3 — Xyp
lg Xpa — Xy

where t; is the measured time-of-flight from beacon 7.

"Note: We assume the transceiver operates at speed of sound ¢
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Exercise: Solution

Long Base-line Navigation

We derive the VH,,, and plug it into the 4-step algorithm already introduced:

VH,, = —-

where:

Ayi = (To; — ) /71, Ayi = (Ybi — Y) /74, Dz = (26 — 2) /T4

ri =/ (@i — )2 + (yoi — ¥)? + (201 — 2)?
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Long Base-line Navigation

Z 22 Hon-linear least =squares soclution to the Long Base-line Navigation

3 precision history = []: % initiaslization precision history [m]

4 desired precision = 0.001; % desired precision of the estimated position [m]

5 c o= 343; % speed fo sound [mps]

& dH = zeros(d4,3): % initial Jacckian wvalues

7 ¥ = [10 30 &0 25; 10 20 70 &0; 10 10 5 301; ¥ known beacon positions [m]

8 v est = [0; 0; 0]: % initial estimate of wehicle position [m)

9 v _true = [5.123; 15.456; 25.789]: % unknown true wehicle position [m]

10 % generating time-of-flight measurements (no 3en3ocr noise assumed):

13 ¥diff true = ¥b - repmat(¥v_true, 1, size(Xk, 2)):r

1z Ztof = 2* ([norm(¥diff true(:,1)); norm(Xdiff true(:,2)); norm(¥diff true(:,3)); norm(Xdiff true(:,4))]1) c:
13

14 Hdiff est = Xb - repmat(¥v_est, 1, size(Xb, 2));

15 Hest = 2*{[norm{¥diff est{:,1)); norm{Ediff est{:,2)); norm({Xdiff est(:,3)); norm({Xdiff est{:,4))]1) c;
ls precision = 0.5*c*norm{Ztof - Hest):

17 while precision > desired precision

1B % updating the Jacocbian

139 for i=l:size(Xb,2)

Z0 dH(i,:) = -2/c*transpose (Xdiff est(:,i)./norm(E4diff est{:,1i)));

Z1 end

ZZ ¥ updating the position estimate

Z3 v est = ¥v_est + pinv(dH"+*dH)*dH"* (Ztof - Hest):

z4 i propagating new estimate thrgough the ckservation model

Z5 Ediff esat = ¥b - repmat(¥v_est, 1, size(Xb, 2));

ZE Heat = 2* ([norm(¥diff est(:,1}): norm(Ediff est(:,2)): norm(Xdiff estc(:,3)): norm(¥diff eac(:,4))]) c:
Z7 ¥ updating the precision of the current estimate

ZB precision = 0.5*c*norm{Ztof - Hest); %[m]

Z9 end
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