
ARO Homework 4: ICP with fast

nearest-neighbour search

Karel Zimmermann Vladimir Kubelka
Ondrej Holesovsky Radoslav Skoviera

2018

You are given sequences of 2D pointclouds and of noisy odometry mea-
surements (absolute translations and rotations of a mobile robot in the world
coordinate frame). A code skeleton with methods for loading the data and com-
puting certain coordinate transforms is available in the Jupyter notebook file
icp 2d student.ipynb. The notebook also contains more detailed instructions.
Your task is to build a 2D pointcloud map using the several partial pointclouds
collected from different robot poses. Utilize the ICP (Iterative Closest Point)
algorithm for the mapping process.

Each iteration of the ICP algorithm requires to find the best point corre-
spondences between two pointclouds by means of the nearest neighbour search.
The simplest implementation of the nearest neighbour search has linear time
complexity (it needs to iterate over all the points), which would be too slow for
real-world pointclouds (hundreds of thousands of points). A k-d tree is a faster
algorithm for nearest neighbour search suitable for low dimensional vectors.

1. Learn more about what a k-d tree is and what it is good for.

2. Look up the documentation of the SciPy k-d tree implementation.

3. Implement the ICP algorithm (e.g. in the empty icp function body of the
Jupyter notebook). To make things simpler at this point, use only the
sequence of pointclouds, not the odometry data. Employ a k-d tree for
nearest neighbour search.

4. Test your algorithm on the provided data. Compare the quality of si-
multaneous robot pose tracking and 2D mapping based on the coordinate
transforms provided by: a) odometry, b) ICP.

5. Bonus: There are cases when the ICP on its own can fail to track the
motion of a robot correctly. Give a real-world example of such a case.
Utilize the odometry sequence to make the ICP pose tracking and mapping
more robust in these scenarios.

1


