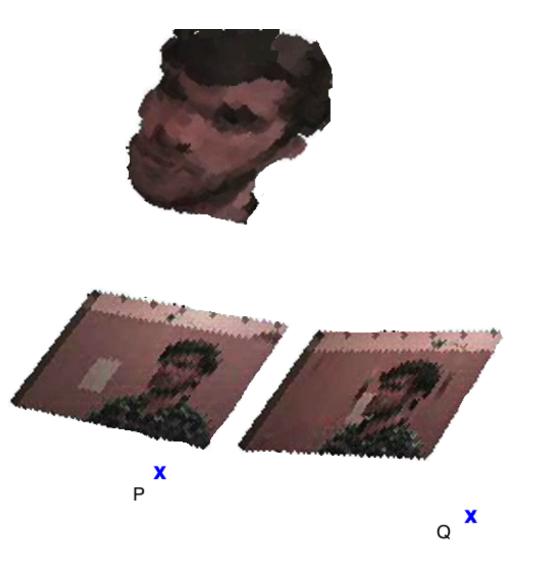
Epipolar Geometry and its application for the construction of state-of-the-art sensors.

Karel Zimmermann

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

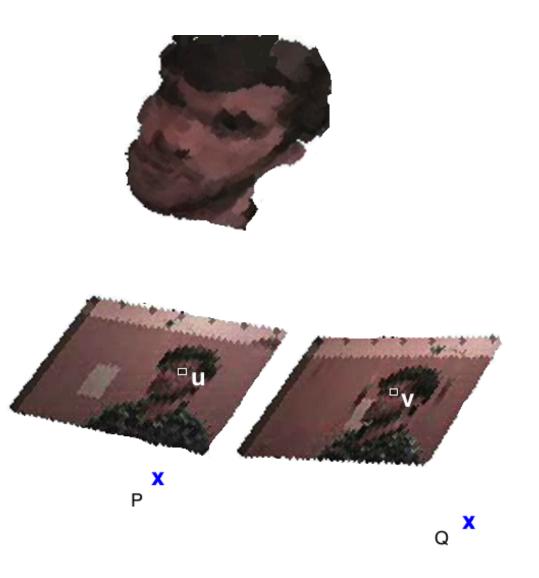
 You are given two images of an object captured by two cameras P and Q from different view-points.



• Given pair of corresponding pixels (\mathbf{u}, \mathbf{v}) (i.e. pixels corresponding to the same unknown 3D point \mathbf{X} on the object), you can easily compute \mathbf{X} .

р

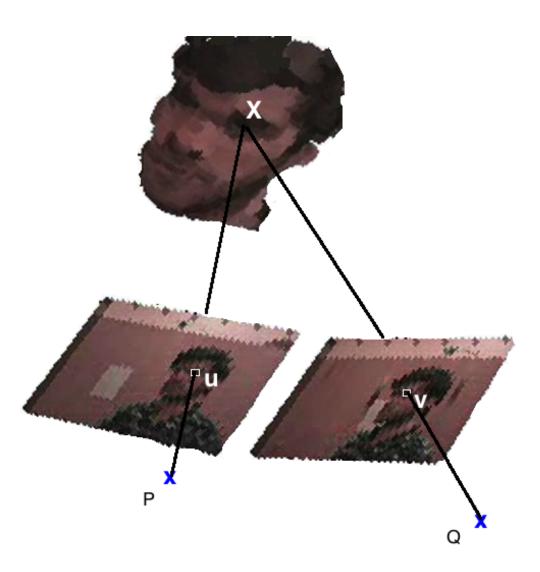
3/37



• Given pair of corresponding pixels (\mathbf{u}, \mathbf{v}) (i.e. pixels corresponding to the same unknown 3D point \mathbf{X} on the object), you can easily compute \mathbf{X} .

р

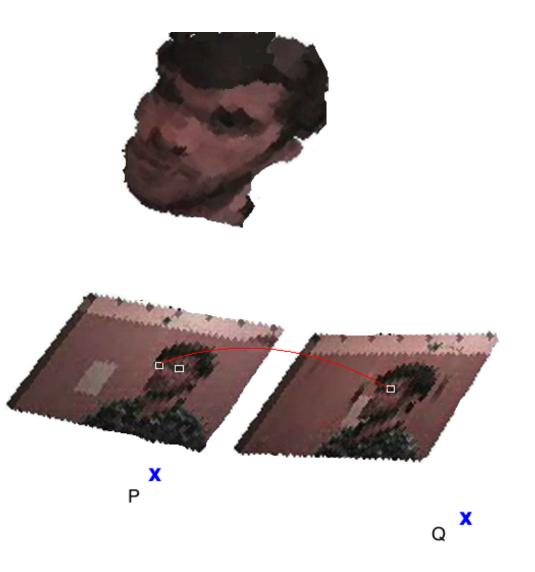
4/37



 The only problem is, that you do not have the correspondence (u, v) and naïve matching of pixel neighbourhoods does not work. р

m

5/37



This lecture is about

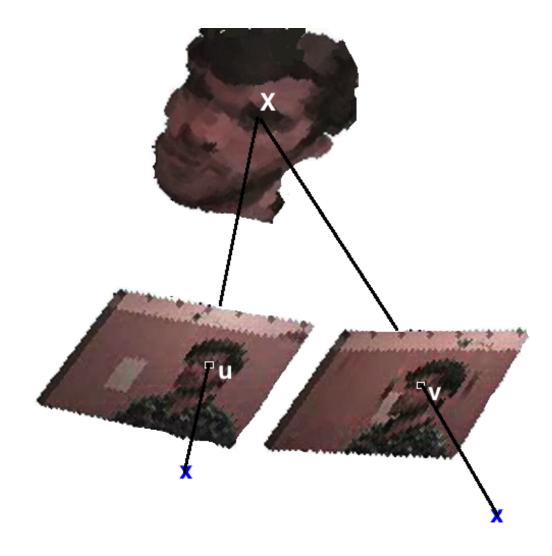
• how to get 3D points from images captured by known cameras and

р

m

6/37

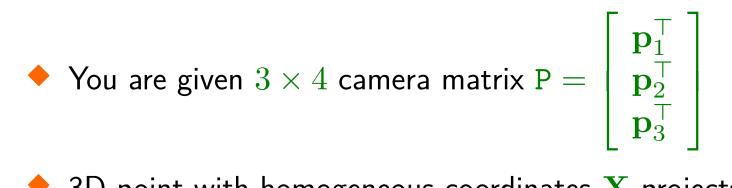
• how to use this knowledge to built state-of-the-art depth sensors.



Outline

Epipolar geometry

- Epipolar line, essential and fundamental matrix
- L_2 estimation of the essential matrix
- Depth sensors: Stereo, Kinect. RealSense, Lidar
- Depth from a single camera and the robust estimation of the essential matrix (RANSAC).

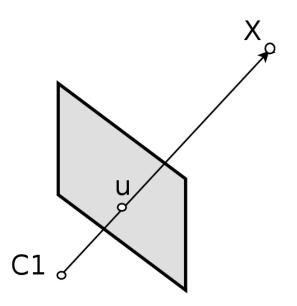


ullet 3D point with homogeneous coordinates ${f X}$ projects on pixel ${f u}$

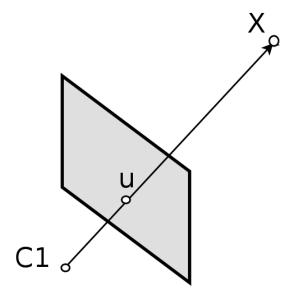
• You are given
$$3 \times 4$$
 camera matrix $P = \begin{bmatrix} \mathbf{p}_1^\top \\ \mathbf{p}_2^\top \\ \mathbf{p}_3^\top \end{bmatrix}$

ullet 3D point with homogeneous coordinates ${f X}$ projects on pixel ${f u}$

$$u_1 = \frac{\mathbf{p}_1^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}}, \quad u_2 = \frac{\mathbf{p}_2^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}}$$

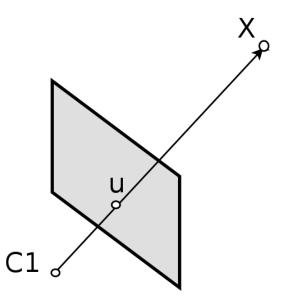


• What if **u** is known? Which **X** correspond to **u**?

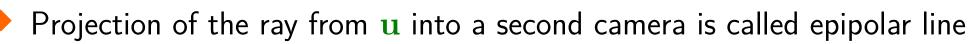


- What if ${f u}$ is known? Which ${f X}$ correspond to ${f u}$?
- All 3D points corresponding to pixel u lies in 1D linear subspace (ray) of 3D space (2 linear equations with 3 unknowns):

$$\begin{array}{l} u_1 \mathbf{p}_3^\top \mathbf{X} = \mathbf{p}_1^\top \mathbf{X}, \\ u_2 \mathbf{p}_3^\top \mathbf{X} = \mathbf{p}_2^\top \mathbf{X} \end{array} \Rightarrow \begin{bmatrix} u_1 \mathbf{p}_3^\top - \mathbf{p}_1^\top \\ u_2 \mathbf{p}_3^\top - \mathbf{p}_2^\top \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{0}$$

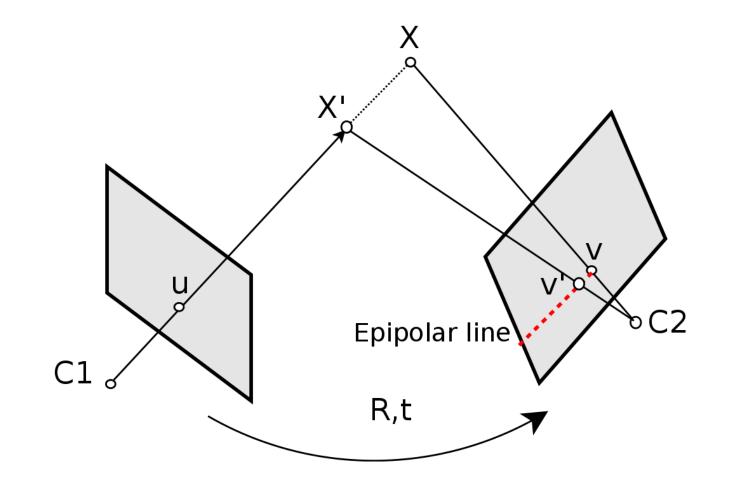


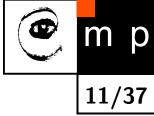
Fundamental matrix



$$\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \, \mathbf{v} = 0\},\$$

• where matrix $\mathbf{F} = \mathbf{K}^{-\top} (\mathbf{R} \times \mathbf{t}) \mathbf{K}^{-1}$ is called fundamental matrix.

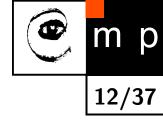




Essential matrix

• We assume that K is known (i.e. the camera is calibrated).

Essential matrix



- We assume that K is known (i.e. the camera is calibrated).
- We normalize coordinates $u_n = K^{-1}u$, $v_n = K^{-1}v$ and pretend that K is identity.

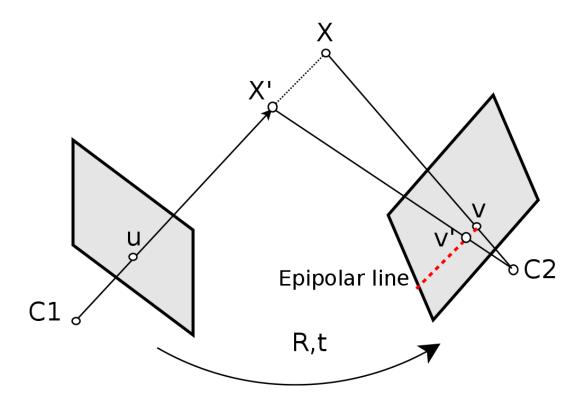
Essential matrix

- We assume that K is known (i.e. the camera is calibrated).
- We normalize coordinates $\mathbf{u_n} = K^{-1}\mathbf{u}$, $\mathbf{v_n} = K^{-1}\mathbf{v}$ and pretend that K is identity.

m p

12/37

• Epipolar line wrt normalized coordinates is $\{\mathbf{v_n} \mid \mathbf{u_n^{\top} E v_n} = 0\}$, where matrix $\mathbf{E} = \mathbf{R} \times \mathbf{t}$ is called essential matrix.



Derivation: https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

What is the essential matrix good for?

Important result 1:

- If camera motion is **known** (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} F \mathbf{v} = 0\}$ or $\{\mathbf{v}_n \mid \mathbf{u}_n^{\top} E \mathbf{v}_n = 0\}$).

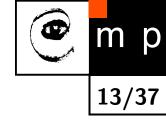
What is the essential matrix good for?

Important result 1:

- If camera motion is **known** (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \mathbf{v} = 0\}$ or $\{\mathbf{v}_n \mid \mathbf{u}_n^{\top} \mathbf{E} \mathbf{v}_n = 0\}$).

Important result 2:

- If camera motion is **unknown** (e.g. motion of a single camera), then
- the essential matrix determines relative position of cameras (i.e. motion), since there exist unique decomposition $E = R \times t$.



What is the essential matrix good for?

Important result 1:

- If camera motion is **known** (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \mathbf{v} = 0\}$ or $\{\mathbf{v}_n \mid \mathbf{u}_n^{\top} \mathbf{E} \mathbf{v}_n = 0\}$).

р

13/37

Important result 2:

- If camera motion is **unknown** (e.g. motion of a single camera), then
- the essential matrix determines relative position of cameras (i.e. motion), since there exist unique decomposition $E = R \times t$.
- + From now on, we drop the index n in normalized coordinates.
- How do we obtain the essential/fundamental matrix?

• Let us assume that we have several correct correspondences.

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

p

14/37

• For each correspondence pair \mathbf{u}, \mathbf{v} , the following holds:

$$\mathbf{u}^{\top} \mathbf{E} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \\ \mathbf{e}_{2}^{\top} \\ \mathbf{e}_{3}^{\top} \end{bmatrix} \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \mathbf{v} \\ \mathbf{e}_{2}^{\top} \mathbf{v} \\ \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} = \begin{bmatrix} u_{1} \mathbf{e}_{1}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} =$$

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

• For each correspondence pair \mathbf{u}, \mathbf{v} , the following holds:

$$\mathbf{u}^{\top} \mathbf{E} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \\ \mathbf{e}_{2}^{\top} \\ \mathbf{e}_{3}^{\top} \end{bmatrix} \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \mathbf{v} \\ \mathbf{e}_{2}^{\top} \mathbf{v} \\ \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} = [u_{1} \mathbf{e}_{1}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] = [u_{1} \mathbf{v}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] = [u_{1} \mathbf{v}^{\top} \mathbf{v} + u_{2} \mathbf{v}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] = [u_{1} \mathbf{v}^{\top} \mathbf{v} + u_{2} \mathbf{v}^{\top} \mathbf{v} + u_{3} \mathbf{v}^{\top} \mathbf{v}] \begin{bmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{2} \\ \mathbf{e}_{3} \end{bmatrix} = 0$$

It must hold for all correspondece pairs \mathbf{u}_i , \mathbf{v}_i , therefore:

$$\begin{bmatrix} u_{11}\mathbf{v}_1^\top & u_{12}\mathbf{v}_1^\top & u_{13}\mathbf{v}_1^\top \\ u_{21}\mathbf{v}_2^\top & u_{22}\mathbf{v}_2^\top & u_{23}\mathbf{v}_2^\top \\ \vdots \vdots \end{bmatrix} \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = \mathbf{0}$$

• It is just homogeneous set of linear equations:

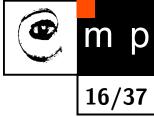
$$\underbrace{\begin{bmatrix} u_{11}\mathbf{v}_1^\top & u_{12}\mathbf{v}_1^\top & u_{13}\mathbf{v}_1^\top \\ u_{21}\mathbf{v}_2^\top & u_{22}\mathbf{v}_2^\top & u_{23}\mathbf{v}_2^\top \\ \vdots \vdots \\ \mathbf{A} & \mathbf{e} \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = \mathbf{0}$$

- We want to avoid trivial solution $\mathbf{e}_1 = \mathbf{e}_2 = \mathbf{e}_3 = \mathbf{0}$,
- therefore the following optimization task (constrained LSQ) is solved:

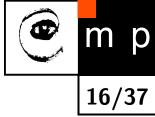
$$\arg\min_{\mathbf{e}} \|\mathbf{A}\mathbf{e}\| \text{ subject to } \|\mathbf{e}\| = 1$$

 the solution is singular vector of matrix A corresponding to the smallest singular value (can be found via SVD or eigenvectors/eigenvalues of AA^T)

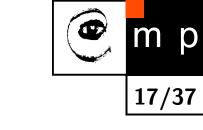
 The same is valid for the estimation of the fundamental matrix from not normalized coordinates.



- The same is valid for the estimation of the fundamental matrix from not normalized coordinates.
- L_2 -norm works only in a controlled environment (e.g. offline stereo calibration).

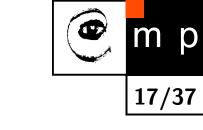


- The same is valid for the estimation of the fundamental matrix from not normalized coordinates.
- L_2 -norm works only in a controlled environment (e.g. offline stereo calibration).
- I will show how essential/fundamental matrix allows to estimate correspondences in state-of-the-art depth (3D) sensors.



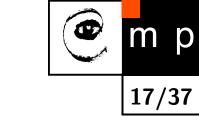
- Pair of cameras mounted on a rigid body, which provides depth (3D points) of the scene (simulates human binocular vision).
- Relative position of cameras fixed

⁰Courtesy of prof.Boris Flach for original stereo images and depth images



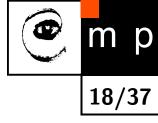
- Pair of cameras mounted on a rigid body, which provides depth (3D points) of the scene (simulates human binocular vision).
- Relative position of cameras fixed
- offline: fundamental matrix estimated from known correspondences.

⁰Courtesy of prof.Boris Flach for original stereo images and depth images

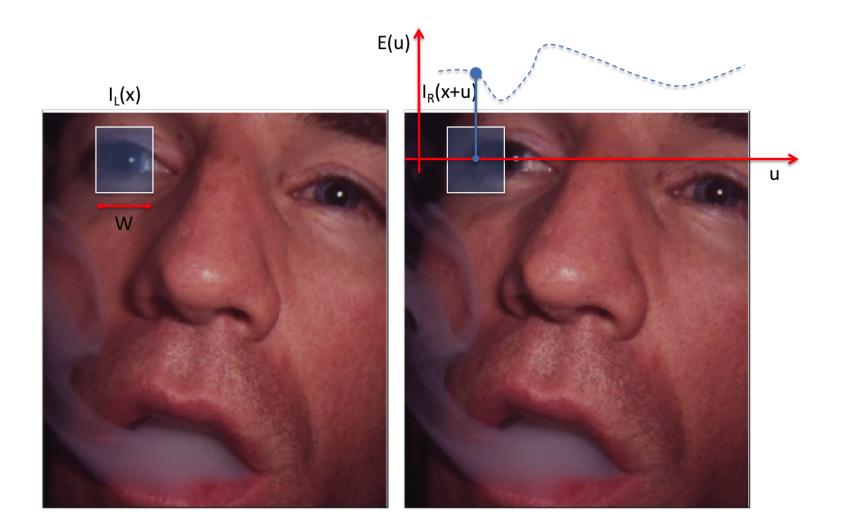


- Pair of cameras mounted on a rigid body, which provides depth (3D points) of the scene (simulates human binocular vision).
- Relative position of cameras fixed
- offline: fundamental matrix estimated from known correspondences.
- **online**: correspondences searched along epipolar lines.

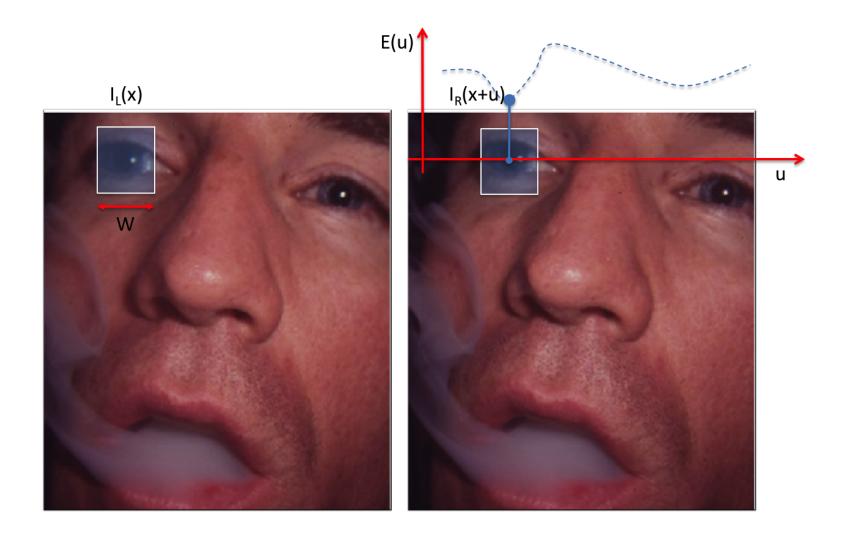
⁰Courtesy of prof.Boris Flach for original stereo images and depth images

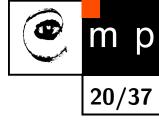


Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$

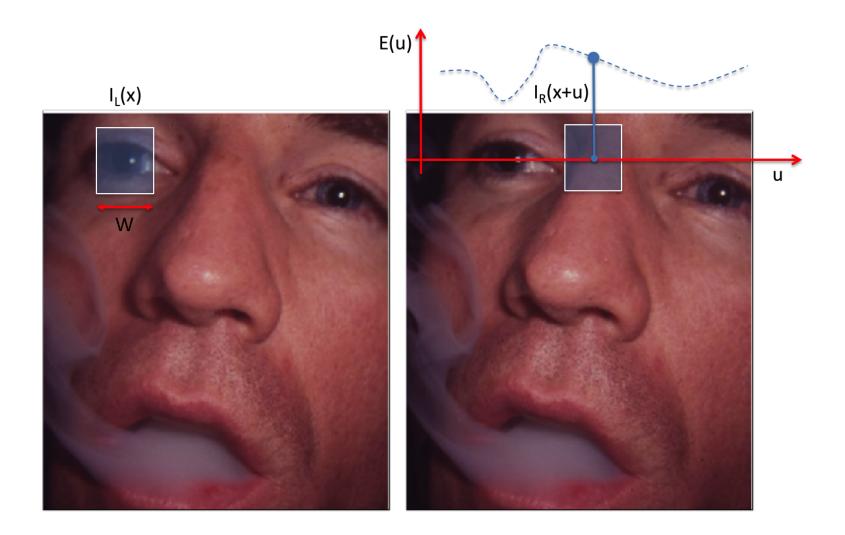


Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$



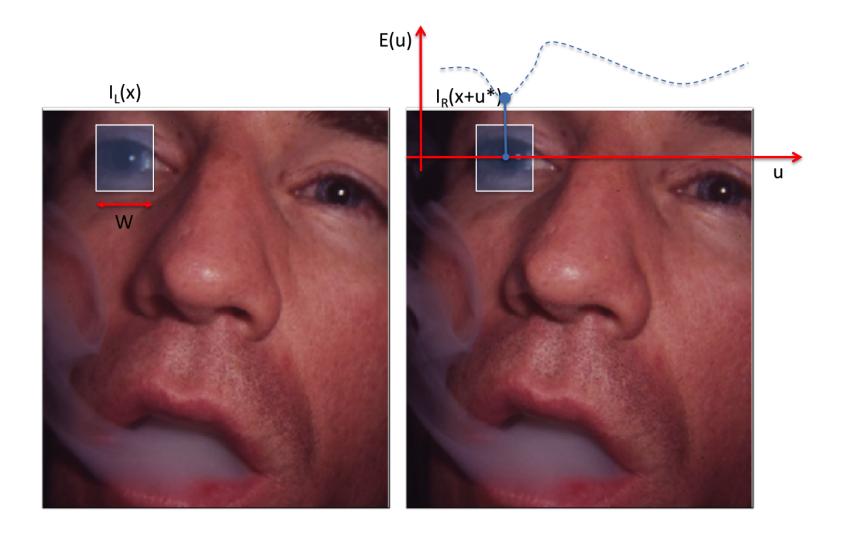


Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$





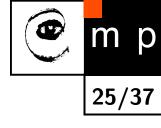
Correspondence for each pixel estimated separately: $u^* = \arg \min_u E(u)$



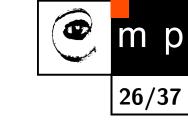
Correspondence for each pixel estimated separately: $u_1^* = \arg \min_u E_1(u),$

Correspondence for each pixel estimated separately: $u_1^* = \arg \min_u E_1(u), \ u_2^* = \arg \min_u E_2(u)$

Correspondence for each pixel estimated separately: $u_1^* = \arg \min_u E_1(u), \ u_2^* = \arg \min_u E_2(u) \ \dots \ u_N^* = \arg \min_u E_N(u)$

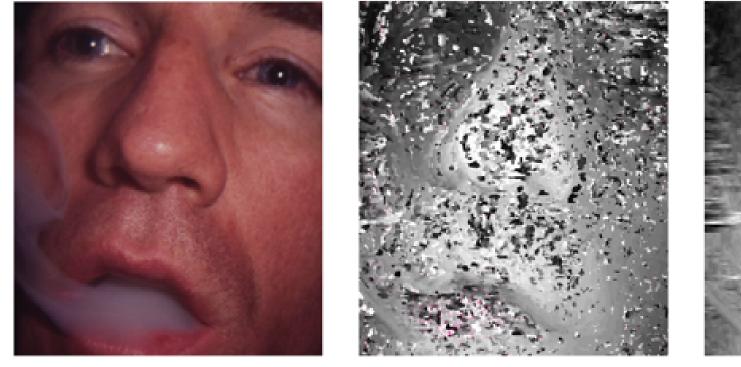


How can we improve the result?



Energy with horizontal smoothness term:

$E_1(u_1) + C(u_2 - u_1)^2 + E_2(u_2) + C(u_3 - u_2)^2 + E_3(u_3) + \dots + E_N(u_N)$



Image

Block matching

Dynamic programming

Dynamic programming solves each line of N pixels separately:

$$u_1^* \dots u_N^* = \arg\min_{u_1 \dots u_N} \sum_{i=1}^{N-1} E_i(u_i, u_{i+1})$$

Image

Block matching

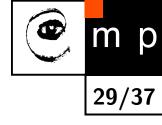
Dynamic programming

What else can we do?

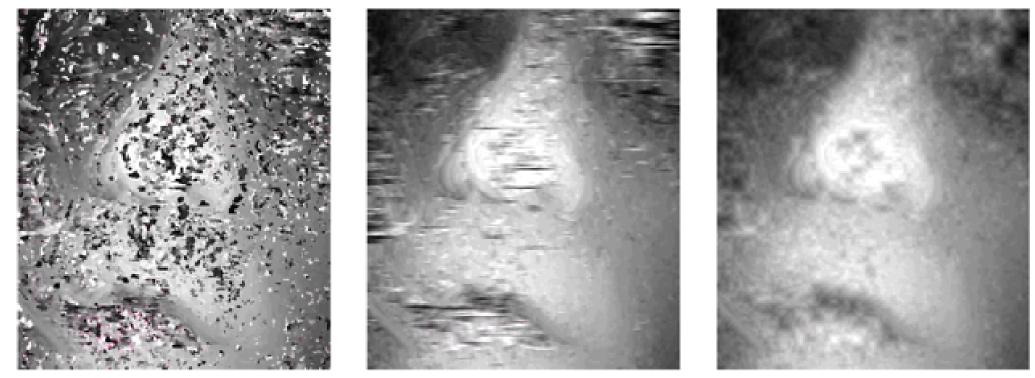
Image

Block matching

Dynamic programming



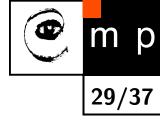
Enforce also vertical smoothness \Rightarrow graph energy minimization (computationally demanding optimization solved on specialized chips).



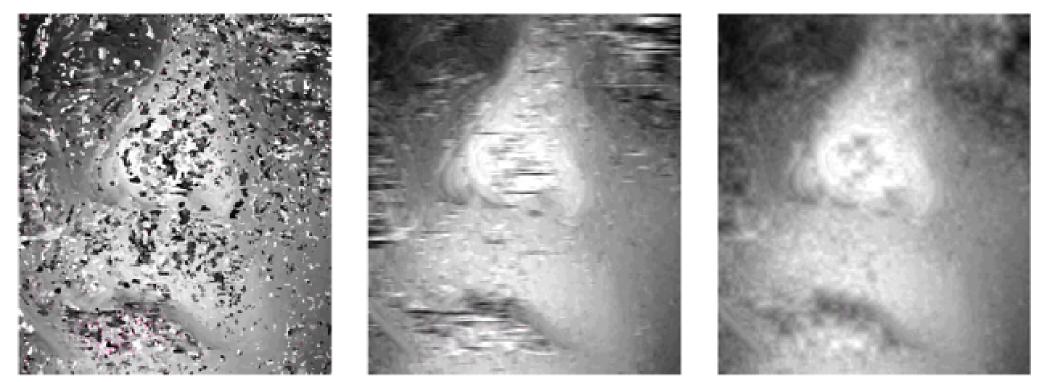
Block matching

Dynamic programming

(Min,+) solution



Enforce also vertical smoothness \Rightarrow graph energy minimization (computationally demanding optimization solved on specialized chips).



Block matching

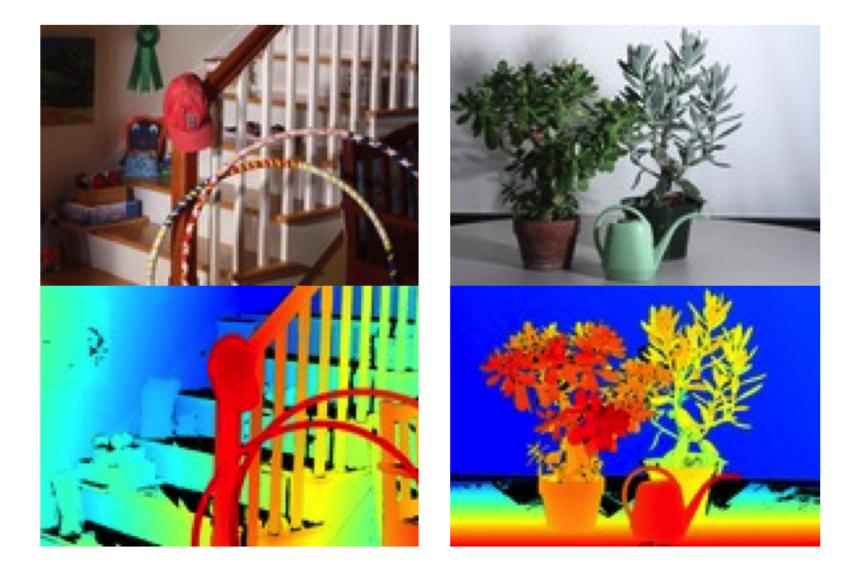
Dynamic programming

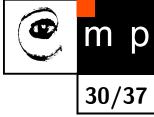
(Min,+) solution

Limitation: usually works only on sufficiently rich patterns and sufficiently smooth depths.

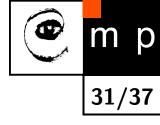
Stereo competition

Do you have your own idea how to estimate the depth from stereo images?
http://vision/middlebury.edu/stereo/data/2014/



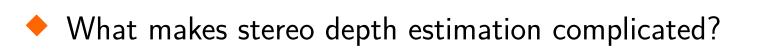


Stereo conclusion



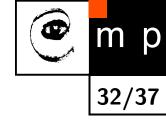
What makes stereo depth estimation complicated?

Stereo conclusion

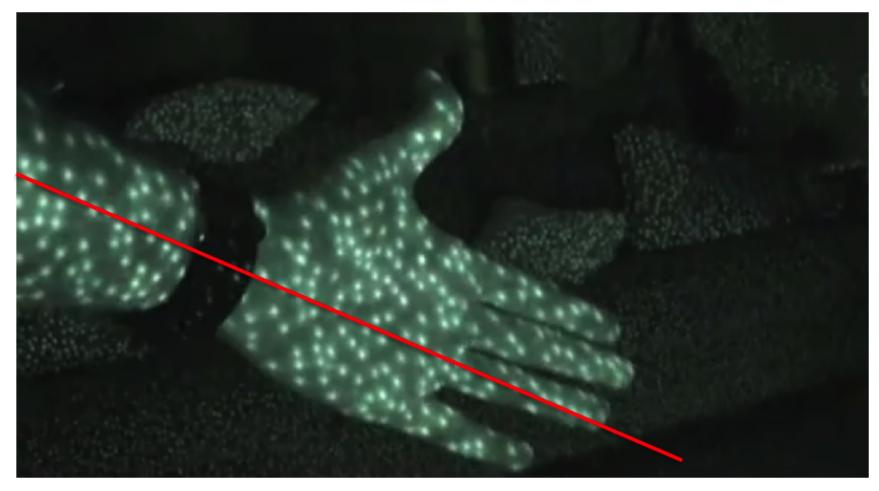


• Can you get rid of it?

Kinect (structured-light approach)

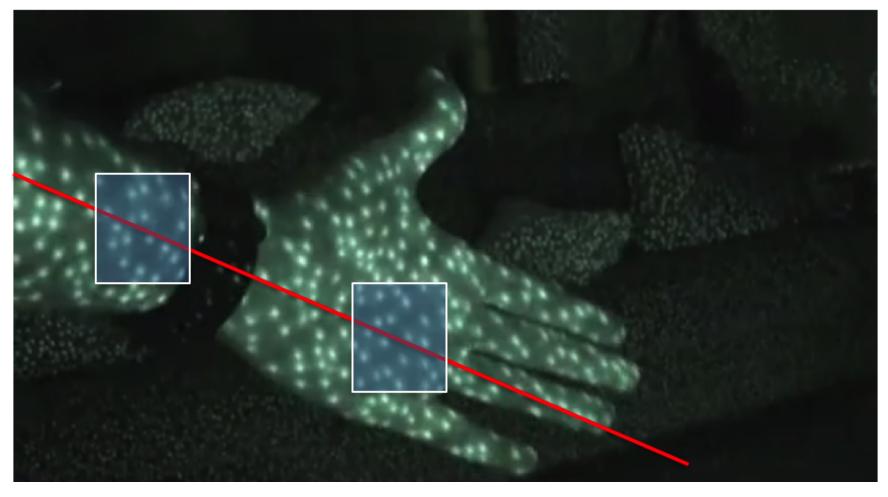


- Stereo looks at the same object two-times and estimates the correspondence from two passive RGB images.
- Kinect avoids ambiguity by actively projecting a unique IR pattern on the surface and search for its known appearance in the IR camera.

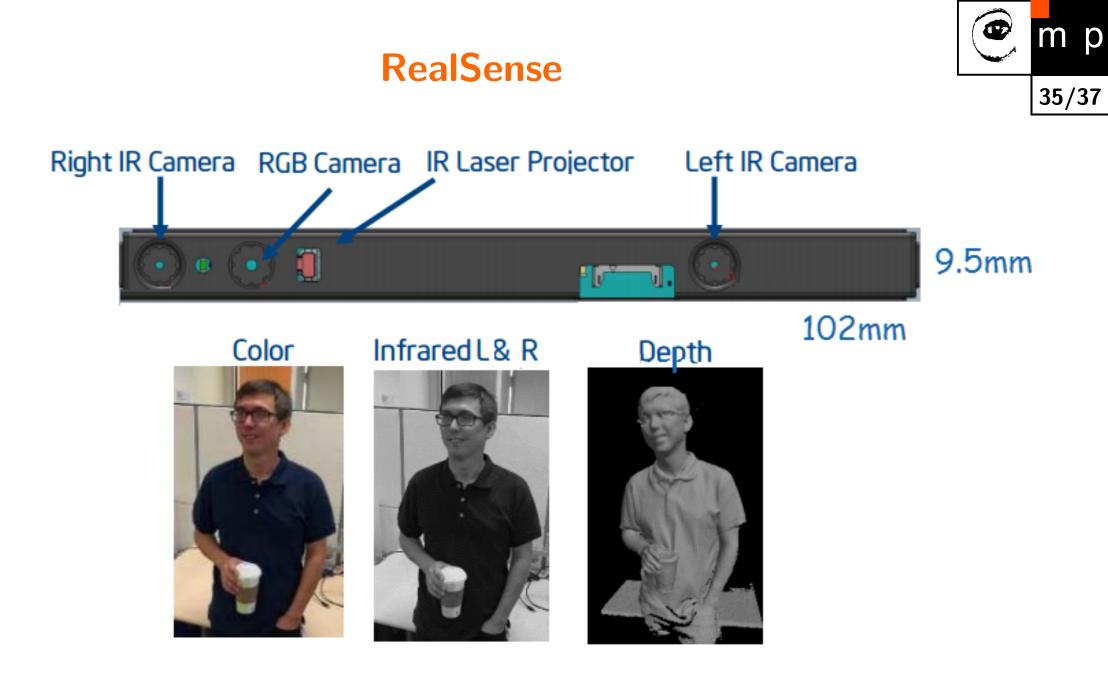


 Since camera-projector relative position is known, correspondence between projected pixel and observed pixel lies again on epipolar lines.

Kinect

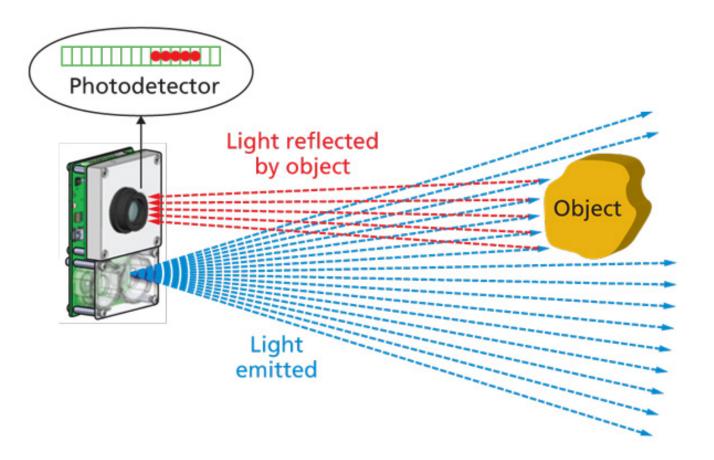


- Unique IR speckle-pattern: no two sub-windows with the same pattern
- Energy along epipolar line has only one strong minimum.
- **Limitation:** works only indoor.



- Hybrid approach one IR projector and two IR cameras.
- Combines advantages of stereo and structured light approach. So far best solution for robotics.

Lidar (Time-of-Flight sensor)

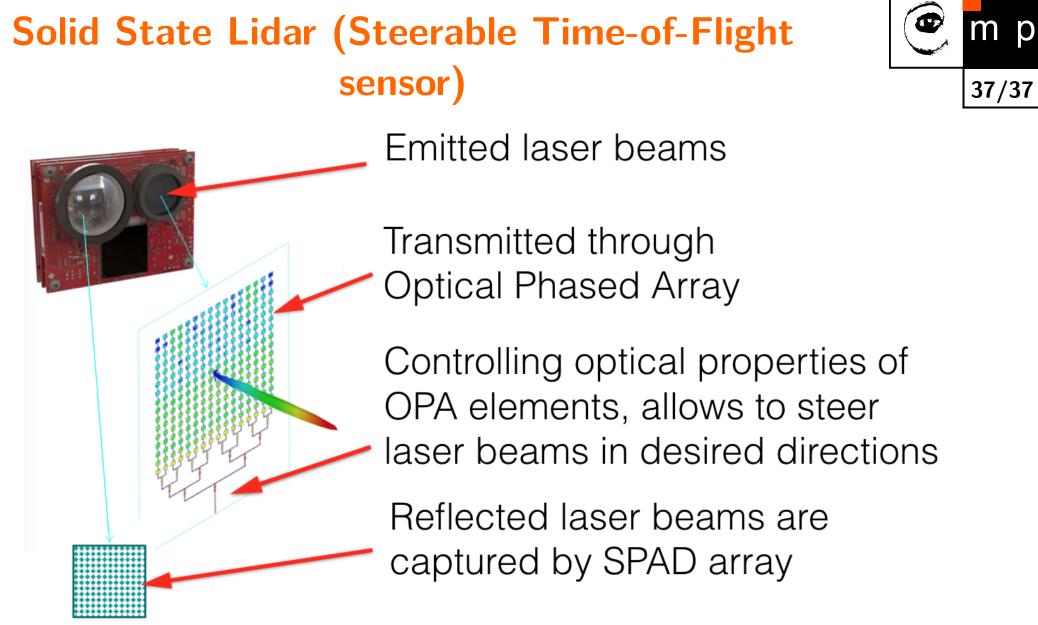


р

m

36/37

- Light emitted from laser projector is reflected by the object and then captured by photodetector.
- Delay between the light emission and detection determines the depth.
- Usually expensive, low resolution (sweeping plane rotation), heavy, prone to mechanical wear.



Images of S3 Lidar redistributed with permission of Quanergy Systems (http://quanergy.com)

- Active ray steering allows to focus measurements on the parts of the scene relevant for the scenario.
- Not yet commercially available.

Conclusions

- Structured-light works inside
- Time-of-flight is heavy and prone to mechanical wear
- Active sensors (those which projects something) might interfere!

